Chapter 3: Continuous Time and Continuous State Models

A. Continuous Time Payment Models

In this section, we begin with a simple model to value a zero-coupon bond in continuous
time in an economy with a flat yield curve (market interest and discount rates are invariant with
respect to bond maturity). We adjust this environment to allow for a finite number of changes in
interest rates then continuous variations in rates over time to maturity for our zero-coupon bond.

Single Payment Model
In Chapter 2, we derived the continuous time present value for a single future payment: !

(1) PV =FVe T,

where 7 is the constant discount rate. Any asset making a single payment in the future can be
valued with this model, as long as a continuous time model is appropriate for this purpose. For
example, a T-year riskless zero-coupon bond with face value F is valued as By = PVg = Fe™.

Pricing a Bond with a Continuous Deterministic Interest Rate

Since future interest rates are normally unknown, most models for interest rates are
probabilistic in nature. Nevertheless, a deterministic model can serve as an excellent introduction
to the more sophisticated models that we will cover extensively later in this text. In this section,
we will assume that the interest rate (z) is a known real-valued continuous function of time ¢.
The rate, while not stochastic, may or may not change with time.

The importance of Riemann Sums and their limits extends beyond their applications to
finding areas under curves. Many continuous valuation models are derived by first
approximating equations using discrete models resulting in Riemann Sums. Then, taking the
limit as n approaches infinity, we derive an appropriate continuous valuation model. Here we
will see this principle illustrated to price a bond.

As we reviewed in Chapter 2, the price of a zero-coupon bond is simply the present value
of its face value at maturity. Let /' denote the face value of the bond, and assume that it is
purchased at time 0 and matures at time 7. First, we approximate this continuous model with a
discrete model in which interest is accumulated and compounded over a total of n equally
intervals of time from 0 to 7. This means that At = (7— 0)/n = T/n. The n time intervals are [¢:.1,¢]
for i=1,2,...,n with tp=0 and ¢,=T. Consider the last time interval [#,-;,¢,]. The interest rate over
this time period is 7(#,-1). Since t,-t,.1=A¢, then the amount of interest paid on 1 unit of money
over the time interval [#,-1,7,] equals r(t,-1)At. If we were to regard time ¢,-; to be the present time,
then the present value of the bond equals F(I+ r(t,-1)4t)”. Next, consider the time interval [#,-, -
1]. If we regard time ¢,-> as the present time, and repeat the same argument, then the present value
of the bond at time #,.> equals F(1+ r(t,-2)At)" (1+ r(t,-1)At)". Continuing this process all the way
back to time 0 and choosing Af to be very small, then we see that we can approximate the present
value of the continuously modeled bond by the equation:

By ~ F(1 +r(te)At) (1 + r(t)A) (A + r(ty)At) - (1 + r(t,)At) L.

! Much of the material in this chapter was adapted from Knopf and Teall [2015].
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Next, take the log of both sides of the equation above:
InB, = InF — In(1 + r(ty)At) — In(1 + r(t)At) — -+ — In(1 + r(t,)At).

To estimate the log terms on the right-hand side of the equation, we find the second-order
Taylor polynomial of the function f(x) = /n(1+x) about x = 0. Taking derivatives, we calculate
that: £'(x) =(1+x)", f"(x) = -(1+x)?, and so f{0) = 0, £’(0) = 1, {"'(0) = -1. The function In(1+x)
can be estimated by its second-order Taylor polynomial about 0:

1 1
In(1+x) =0+ (1)(x—0)+ E(—l)(x —0)2=x-— Exz.
This can be used to approximate the log terms in the estimate for /nBy:
1

In(1+r(ti-DA0) = r(ti-)At = = [r(ti-)]* (A0

As At — 0, the term % [r(t;—1)]?(At)? becomes negligible, resulting in the approximation:
In(1+ r(t;_1)At) = r(t;_,)At.2

Using this approximation in the estimate for /nBy gives:

n
InBy = InF — r(ty)At — r(t))At — -+ — r(t,—1)At = InF — Z r(t;_1)At.

i=1

Exponentiating both sides of the equation results in:
By = Fe(-Ziar(tin)at),
In the limit, as n approaches infinity, we obtain the present value of the bond:

BO = Fe (711—?:}0_ Z?=1 r(ti—1)At)

Notice that on the right-hand side of the equation, the expression in the exponent is a
limit of Riemann Sums with #" = fi.1. By the definition of the definite integral:

3) B, = Fel~lo r®at),

Equation (3) gives the price of the bond.

2 Note: When4t is very small In(1 + 7(t;_1)At) = r(t;_;)At. As At — 0, this approximation improves, as long asr
has a continuous second derivative.



Pricing a Bond with a Deterministic Continuous Rate: An Illlustration

Here, we will find the price of a 10-year bond with a face value of $100 where the
interest rate is given by r(z) = .05 - .001t. Notice that the interest rate declines proportionally
over time in this simple model of the term structure. Using equation (3), we can easily find the
price of the bond:

B, = 100e(~Jo (05-0010dt) _ 100,-(05t-0005¢3°) — 10045 = $63.76

B. Differential Equations in Financial Modeling: An Introduction

In this and the next sections, we will examine riskless securities whose prices evolve
continuously over time. We begin with simple growth models, while introducing the technique
of solving differential equations by separating them. Then we target our discussion to assets such
as stock, allowing for returns in continuous time. Nest, we will examine interest rates with a
tendency to continuously revert towards some long-term rate. In later chapters, we will examine
each of these processes under various types of uncertainty.

Financial economists and practitioners are often concerned with the development or
change of a variable or asset over time. A differential equation can be structured to model the
change (evolution or direction) of an asset’s price over time. From this equation, a second
equation (solution) might be derived to describe the asset’s value (state or path) at a given point
in time. The asset price is the dependent variable which is a function of the independent variable
(time). More generally, one is interested in determining the solution for a dependent variable as a
function of one or more independent variables. Often, the relationship between the dependent
variable in terms of its independent variables is described by a differential equation. A
differential equation is defined to be an equation that relates the dependent variable and one or
more of its derivatives. A differential equation is defined to be an equation that relates the
dependent variable and one of its derivatives. The solution to a differential equation is an explicit
function that, when substituted for the dependent variable in the differential equation, leads to an
identity. The following is a simple differential equation along with its solution involving
dependent variable x and independent variable ¢:

dx

4) L=t
(5) x=2t2+C

where C is a constant. We verify the solution to differential equation 4 by noting that it
represents the derivative of x with respect to ¢ in its solution Equation 5. Equation 4 represents
the change in variable x over time (dx = td¢). Note that this rate of change increases as ¢
increases. Equation 5 represents the state or value of x at a given point in time ¢. Because
equation 4 concerns only the first derivative of the function of ¢, it is referred to as a first order
differential equation.

Separable Differential Equations and Growth Models
A differential equation is said to be separable if it can be rewritten in the form g(x)dx =
f(t)dt. A separable differential equation written in this form can be solved by the following:




(6) Jg()dx = [ f(H)dt

The following is an example of a separable differential equation:

ax _ tx? — 2t
i X
We separate as follows:
dx Hx? — 2
i (x X)
X _tdt dx = tdt
(x2-2x) of (x2-2x) X =

f(lezx)dxzftdt

Growth Models
Consider the following example of a separable differential equation:

(7) % =7rx

To solve this equation, we first separate the variables as follows:
ldx = rdt
X

Next, we integrate both sides and to obtain a general solution for x:

1
—dx = | rdt
x
In|x|+C, =1t +C,
In|x|=1rt+C, — C;
When we integrate both sides of the equation, one obtains arbitrary constants C;and C>. Since
these constants are arbitrary, we can define C=C; — C> which is still an arbitrary constant. Thus,
whenever we integrate both sides of an equation, we only need to add an arbitrary constant to
one side of the equation. So, we have in this case:
In |x| =rt+C.
eln|x| = e % eC
|x| = e x e¢
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x = ieCeTt

(8) x = Ke"™ where K = +e®

The constant K can assume any value. Thus, the general solution (or family of solutions) for our
differential equation involves a constant that can assume any value. A particular solution results
when K assumes a specific value. Stating the value of the function at a given moment of time is
known as an initial condition. In our example, we have x(0) = xo. The initial condition will
determine the constant K, and we will then be able to write down the unique solution that
satisfies both the differential equation and the initial condition. In this case, one particular
solution for x would be x = xoe", where xo is the value of x when ¢ = 0. In any case, this type of
differential equation is typical of those used for modeling growth.

Security Returns in Continuous Time

Continuous time and continuous space models involve securities whose values evolve
continuously over time (their prices can be observed at every instant) and can take on any real
number value. Suppose that the evolution of a stock’s price is modeled by the following
separable differential equation:

as,
©) = S,

The term u represents the security’s drift or mean instantaneous rate of return. This differential
equation is identical to equation (7) with x = S;and » = u. By equation (8), the solution is:

(10) S, = Kekt

Equation 10 represents a general solution to our differential equation 9. If we set K equal
to the stock’s price So at time zero (K can equal any constant), the particular solution to equation
9 would be:

(11) St :SOeMt

Differential equations such as (9) are useful in the modeling of security prices and are adaptable
to the modeling of stochastic (random) return processes.

lllustration: Doubling an Investment Amount

Next, consider a security with value S; in time ¢ generating returns on a continuous basis
such that the security’s price doubles every 7 years. Suppose that the value of this security after
10 years were $50. What would have been the initial value So of this security?

Equation (9) models this security price which can also be depicted by the security’s
return generating process:

ds;
St

= udt



The solution to this equation is obtained with Equation (11). If we substitute # = 7 into the
solution, we obtain:

S7 = 5067” = ZSO
Thus, 4 = [n(2) +~ 7=.09902. With this result, we can easily solve for the security's initial value:

SO — 5109_1 X.09902 _ $50€_10X'09902 — $1858

Mean Reverting Interest Rates

While interest rates vary over time, they tend to be more likely to increase when they are
“low” and decrease when they are high; that is, they tend to drift or revert to some long-term
mean rate (long-term mean rate, not long-term rate). Suppose that u represents the long-term
mean interest rate, 7, the short-term rate at a particular time and /1 an interest rate adjustment
mechanism (also known as a "pullback factor:"

(12) dr = A(u — ry)dt

We will divide both sides by (u — ;) to separate and integrate:

[a=m= e

Since p-r: = - (r: — w), then:

fﬁdrz—f&dt

In|ry, —u|l =-At+C
|re —ul = e MeC

(13) r,—u=+efeM

Define the constant K =+e® so that K can be any constant (positive or negative). Substituting K
into equation (13) and solving for 7; gives the solution:

(14) rn=u+Ke*.
Suppose, for example, the interest rate 2 months ago was 18%, and currently is 16.5% as

it drifts back to the long-term mean rate of 7%. How long will it take for the interest rate to drop
below 10%?° First, we use the long-term drift to obtain K = 11%:

3 Note the similarity of this mean reverting interest structure to Newton’s Law of Cooling. Also, note that the rate
will never actually revert all the way back to its long-term mean.
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To = 18% = 7% + Ke **°,

Next, we solve for the "pullback factor" A by using the interest rate drift over the past two
months:

1, =16.5% = 7% + 11% x e 24

16.5% — 7%

— ,—24 —
11% =e = .86363636

In(.86363636)
A= — = .0733017

Finally, we solve for the time (in months) for the interest rate to drop below 10%:

7 =10% = 7% + 11% x e~0733017¢

t = ————In->=17.7251
-.0733017 11
We see now that it will take 17.7251 months from the start of the process for the interest rate to
drift below 10%, or 15.7251 months from now.

C. Continuous State Models

In the previous chapter, we worked with securities in single-period economies with
multiple states. Thus far in this chapter, we have worked only with single-state models that imply
certainty. If only a single outcome is possible, the economy is certain. Multiple states imply
uncertainty, but pricing is still possible in complete markets. In this section, we will seek to price
securities relative to others in an economy with infinitely many states, though we will still rely
on the same risk-neutral pricing methodology as in the previous chapter. First, we will start with
a few preliminaries leading to a declaration of the distribution of states.

Option Pricing: The Elements

In this section, we will value options in single time-period frameworks with multiple
potential outcomes in continuous outcome space. We will construct very simple probability
distributions to compute expected values of options as functions of conditional expected stock
values. Notice, following on our methodologies from Chapter 2, that we will work with risk-
neutral g probabilities.

Expected Values of European Options

The expected future value of a European call is equal to its expected value conditional on
its exercise at time 7: (E[(ST - X)|ST™>X]) multiplied by the probability that it will be exercised
P[(St>X). We will define ¢[St] to be the hedging probability that Sy = S.* If the range of potential
stock prices is continuous, this expected value is written as follows:

4 A hedging probability, as discussed in Chapter 2, is the probability assigned by a risk neutral investor who values
an asset at the prevailing market price.



Eler] = EIMAX[Sy — X),0]] = ] (Sr — X)q[Sr1dS;
X

where ¢(ST) is the density associated with a stock priced at St at time 7. Note that the call’s value
is zero when S7<X. The probability that the call will be exercised is:

[ee)

PIS; > X] = ] q[Sr1dS;
X

The expected value of the stock and call given that the stock price exceeds the call exercise price
are:

I, SrqlSrldSy

X T T

_ Eler]l [ (S =X)q[Sr1dSy
Flerlse > X = g5 >3 = I, alSr]ds;

These conditional expected values do not account for stock prices when Sr<X. The expected
value of the call is simply the product of its conditional expected value and the probability that it
is exercised.

Call Options and Uniformly Distributed Stock Prices
Suppose that a stock's price at time 7is expected to be uniformly distributed over the
integer values that range from 1 to 100; that is:

—, 1<x<100
a(v) = {100

0, elsewhere

Further suppose that a call option with exercise price X = 60 trades on this stock with the
following terminal payoff function:

Ct = MAX[ST - X, 0]
The probability that the call will be exercised is computed as follows:

100 1 1 100
St =1—-6=.4

QlSy > 60] = f
60

——dS; = —
o 100 100

The expected value of the stock, contingent on its price exceeding 60 is:



100

1 ¢2
P LTI -
E[Sr|Sr > 60] = 61000 1100 - 4 0= 4 = 80
60 100957 ' '
100

The expected value of the call, contingent on it being exercised is:

100
1 2
o 100 S7—60 —S7 —.657
_ fX (ST _X)q[ST]dST . f(,o 7;00 dST . 200 60
Elcr|Sr > X] = foo S1dS =T 001 - 4
v alSr]dSr feo mdsr '
_ (50-60)—-(18—36) 8 _ 20
B 4 4
The expected value of the call at time 7 is:
100 1 1 100
Elcr] = J- (S; — 60) ——dS; = ——S2 — .65 = (50 -60) — (18 —36) =8
60 100 200 60

The present value of this call would simply be its discounted value:

Co = f (St —X)q[Sr]dSre™™ = 8e™T"
X
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Exercises

1. Find the value of a bond that has a face value of $1,000 that matures in one year. The monthly
rate at which interest accrues at time ¢ (in months) after origination is determined by the
following simple model: r(z) = .007 - .00003¢.

2. Which of the following are separable differential equations?
dy _ .2 5.2
a. ac =ty 2t°y
b. &

E:ty +t
Y
. =Y +t

3. Solve the following initial-value problem:
dy
P yt, vo = 100.

4.a. Solve the following equation assuming thatB, = 1. This equation is used for pricing riskless
bonds:
dB;
dt
b. Solve the above equation assuming thatB, = 1.

= 1B

5. Suppose that a statistical time series analysis revealed that an investment grows at a rate

proportional to the square root of its current value with constant of proportionality £:

dv
- = k\V and V(0) = V.

Assume that 7y is its initial value. Find the value of this investment as a function of time.

6. Suppose that the following separable differential equation reflects the continuous growth in a

stock’s price over time:

a5 _ 018
dt

a. Solve this differential equation.
b. Suppose that K =S, = 50. Write the particular solution to this differential equation.

7. A T-year bond with face value Br = F has a price path given by the following differential

equation:

dB,
B_t = T‘Odt

Provide a general and a financially appropriate particular solution to this differential equation.

8. Suppose that a stock's price grows over time at rate p as the firm produces profit, but the firm
also pays a continuous dividend at a rate 5.

a. Write a differential equation to model the stock price over time.

b. What is the solution to this differential equation.

c. Suppose that K =Sy = 50, u = .05 ands = .02. Write the particular solution to this
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differential equation.

9. Suppose that a particular process S; satisfies the differential dS; = W(M — S/)dt and initial value
So with 0 < Sy< M. Find the solution for S; that is valid as long as 0 < S;< M.

10. Suppose a particular contract calls for accruals on an account to be credited such that over
the time interval [t,t + dt], where t is time in years, the amount that is credited equals
$(10,000 + 500t)dt. If these credits are discounted at an annual rate of 4%, what is the present
value of the account after 7 years?

11. The People’s Republic of Chrystal seeks to maintain a target exchange rate of p = PRC6
relative to the U.S. dollar. Should the actual exchange rate r differ from its target rate, it will tend
to drift towards the target rate as per the following function where A and e are constants:

7] = etteX
Suppose the exchange rate 3days ago was 6.5 and is currently 6.4. How long will it take for the
rate to drop below 6.1?

12. Suppose that short term interest rates follow the following mean-reverting process.:
dr = A(u — ry)dt
The long-term mean interest rate u equals .06, the short-term rate ry currently equals .02, and the
"pullback-factor" 4 equals .4.
a. What will be the short-term rate 7 in one year?
b. What will be the short-term rate 7> in two years?

13. Here, we introduce the logistic growth function. Suppose that u represents the long-term
mean interest rate, » the rate at a particular time and A an interest rate adjustment mechanism:
dr = Ar(u — r)dt

1. Is this differential equation separable? If so, demonstrate.

. Solve this differential equation.

3. Suppose that the People’s Republic of Chrystal seeks to maintain a target exchange rate of
pu = PRC6 relative to the U.S. dollar, the adjustment mechanism A in its logistic growth
function is known to be .007 and the current exchange rate is 5. Find an equation that
provides the exchange rate for any time t.

4. What is the exchange rate 10 days from now?

14. Suppose that a stock's price at time 7 is expected to be uniformly distributed over the range
10 to 20; that is:

1

—, 10<x<20
qtx) = {10

0, elsewhere

Further suppose that a put option with exercise price X = 16 trades on this stock with the
following terminal payoff function:
pr = MAX[X — Sr, 0]
a. Calculate the probability that the put will be exercised.
b. Calculate the expected value of the stock's price contingent on it exceeding the exercise
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price of the put.

c. Calculate the conditional expected value of the put contingent on it being exercised.

d. Calculate the expected future value of the put.

e. If 7=2 and r=.1, what is the current value of the put? Assume that the stock price after the
first period does not affect the parameters of the distribution of stock prices for the second
period.
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Solutions

1.In this problem, F = 1000, T =12, and (1) = .007-.00003¢’. Using equation (3), the price of the
bond is:

By = 1,000¢(~Jo (007-00003¢%)dt) _ 1 000=(007¢-00001¢33%) — 1,000 ~96672 — $935.46

2.a. No— We cannot separate y and t variables on two sides of the equation.
b. Yes - The right side factors as t(y + 1)
c. No - The right side cannot be factored as a product of a function of t and a function of y

3. First, separate by multiplying both sides of the differential equation by df and divide both
sides by y. Then integrate to obtain:
dy
[& [
y
1

Iny = Etz +C
since y(0)=100>0.
y = e§t2+c _ Ke%tz
The initial condition implies
100 = Ke® =K.
Thus
ltz
y = 100ez2" .

Alternatively, it is sometimes convenient to work out the solution by using a definite integral

rather than an indefinite integral. So, we could also find the solution by the following steps:
yr T

d
v f tdt.

y
100 0
Observe that to integrate in the variable ¢ from 0 to T means that we are integrating in the
variable y from y(0) = 100 to y;.

1
Inyr—In 100 = ETZ'

yr _1 2
ln(lOO) = 2T .
y_T:e%TZ

100

1
yr = 100e2"".

4.a. To solve this equation, we first separate the variables as follows:
l dBt = T'tdt
B¢

Next we change the variable from 7 to s and integrate both sides from 0 to #:
t t

1
J-B_SdBS = frsds

0 0
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t
InB; — InB, = f reds

0
t

In (B;/By) = J- r,ds

0
t
e!n(Bt/Bo) — efo rsds

Bt/B() — ef(frsds
B, = Byelo s,
Since By = 1, then
B, = efotrsds_
Jyrsa
b. 1 :B4:Boe Ors S.
B, = e—f:rsds

4 t 4 t t
B, = e—fo rsdsefo reds _ e_fo Tsds+ [y rsds _ €f4 reds

5. Let V' =V, denote the value of the investment at time ¢. The problem states that

av
- = k\V and V(0) = V.
Multiplying both sides of the first equation by df and dividing both sides by vV, we have:
dv
— = kdt.
Vv
Next we integrate both sides of the equation from 0 to 7:
Vr T
f v _ kdt
Vv '
Vo 0

Evaluating the integrals, we see that
2/Vy —2,/Vy = kT.
Algebraically solving for V7 gives the solution to be

kT
Vr = (7 + V)2

6.a. In this equation, f(t) = .01 and g(S) = 1/S, which separates as follows:
<dS = .01dt

g(8)dS = f(t)dt
We integrate both sides to obtain a general solution for S:

1
-dS = |.01dt
J5es=]

InS=.01t+C
elnS — 01t 4 ,C
S = Ke%1t whereK = e€
b. A particular solution results when K assumes a specific value, say K = S, = 50. In this case,
the particular solution for S could be S, = 50e°!",

7. The solution to this differential equation gives the bond's price at time ¢ will be obtained by
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the following:

& = frodt
t
These integrals are solved as follows:
InB, =1yt +C

We write the anti-logs of the results of both sides as:

eln t = glot+C

Bt = Kerot
where K = ¢C.This equation represents a general solution to our differential equation. Since Br =
F, evaluating the solution at t = T gives: F = Ke™T,
Solving for K we have:
K = Fe ",
Substituting the value for K into the general solution for B; we obtain the desired solution:
Bt — Fe—ToTerot — Fe—To(T—t).

8.a. The differential equation is as follows:
ds
= (u=205S
dt (u = 0)St

b. In this equation, f(t) = u-6 and g(S) = 1/S, which separates as follows:
<dS = (u— d)dt
We integrate both sides to obtain a general solution for S:

j%dS = ](,u— o)dt
InS=w—-9ot+C
ell’lS — e(/l—é)t + eC
S = KeW 9t where K = e°
c. A particular solution results when K assumes a specific value, say K = Sy = 50. In this case,
the particular solution for S could be S; = 50e¢95-02),

9. First, divide both sides of the differential by M — S; to obtain:
dsS;
M - St
Since, by the chain and log rules, the integral of dS;/ (M — S;) equals — In(M — S;), we will use the
expression /n(M — §;) to obtain the solution for S, The differential of the function f(S;) = In(M —
Sy) 1s:

= udt.

M - St
Changing the variable from ¢ to s and integrating from 0 to ¢ results in
In(M—S,) —In(M —S,) = —ut

l(M_St>— .
"\m—s,) T TH

or

Exponentiating we have:
M - St

= oMt
M — SO e .
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Solving for S; gives:
St = M - (M - So)e_ﬂt.

10. First, the present value of the fund over 7 years is:
PV[0,T] = fOT(1o,ooo +500t)e 0%t

We use the integration by parts formula:
b b

fudv =uv|? —]vdu.

a a
For this problem choose
u = 10,000 + 500t and dv = e ~%%tdt,

so that
du = 500dt and v = J- e 04 dt = —25¢ 04t

Substituting these terms into the integration by parts formula gives
T

PV[0,T] = —25(10,000 + 500t)e~%* | + f 12,500e 04 dt

0
12,500 12,500

—.04T

_ —-.04 —.04T _
= —250,000e + 12,500Te + 250,000 04 e 04

= —250,000e %7 4+ 12,500Te~%* + 250,000 — 312,500e_'04T + 312,500
= —562,500e%* + 12,500Te~%T + 562,500

T
— _ | ,—04T
= 562,500 [1 (1 + 45> e ]

11. Since rp = 6.5 > u = 6, then |u-r:| = -(u-ry) = r:— p. So the solution takes the form:
T, = u + eKekt,
We evaluate the solution at # = 0 and use our initial condition in order to determine -
o = p + eKetx0,
6.5 =6+ eX
Thus, X = .5. Next, we solve for A = -0.074381184 by using the exchange rate drift over the past
3 months:
r3=64=6+.5x%xe3*
6.4—6
.5
Finally, we find that it takes t = 21.638 days from 3 days ago for the exchange rate to drop to 6.1:
7 =61= 6+.5x e 07438t

t=—" ln%=21.638

—.07438

=e3*=38

12.a. First, we solve our differential equation as follows:
dr = A(u — rp)dt

] (ucirrt) B f’ldt
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j ! d(u—rt)z—j/ldt

(k=)
Inlu—r|=-At+K
|l =1l = e ek
Since >, then |p-r:|=u-r. Solving for rin the solution above gives:
K At

re=u—e‘e.
We use the initial condition to determine eX:
.02 =.06 — ek,
so that e =.04. The particular solution for the short-term rate is:
7 = .06 —.04e™41,
The short-term rate in one year will be r; = .06 -.04e™**1=.03319.
b. 72 =.06-.04¢***=.042.

13.a. The equation is separable. We will divide both sides by r(u — r) to separate and integrate:

[ =

b. Using partial fractions, this is written:

j(l%+wl_r))dr=f,1dt

It is easy to start with the equation immediately above, find a common denominator for the terms
being added and verify that it equals the one above it in part a. For now, 0 <r <p, leading to a
general solution for the logistic equation:

1 1
—Inlr|—=Inlu—r| =t +K
u i
Inr —In(u —r) = Aut + uK
elnr—ln(u—r) — el,uteuK
T
(w—r)
r = (u—r)etketut
r(1 + etKetht) = etk elnt
‘ueul{e/lut
(1 + ekKeAur)

c. Our solution to the logistic equation is:
GeHK -007x6t

— eul{elut

r

e = (1 + kK ¢-007x10001)

The initial condition is:
6euKe.OO7><6><O 6euK

(1 + eHKg007x6x0Y = (1 + erK)

which implies that e** = 5/(6-5)=5, which means that:
30e.OO7X6t

~ 1 + 5g007x6t

r0:5:

T

d. Simply substitute 10 for t in part c:
30e.OO7X6x10

= 5.30312

T =
10 1 + 5e:007x6x10
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14.a. The probability that the put will be exercised is computed as follows:

16 1 16
P[S; < 16] = —dS; =—S§ =16—-1=.6
5 <161 = | g5ds; 0|
b. The expected value of the stock, contingent on its price exceeding 16 is:
L o 20
20s -
Jis35dST 2077 |, 20-128
E[S7|Sr > 16] = —53 = . 2 =18
f16 EdST . .
c. The expected value of the put, contingent on it being exercised is:
16
1
_ 1.6Sp — —S7
fOX(X — S7)q[Sr]dSy flloﬁ%dsT T2t 10
E[pTl ST<X]: X = 60 1 = 6
fo q[ST]dST flO EdST ’
_ (25.6 —12.8) — (16 — 5) _ ﬁ _ 3
.6 .6
d. The expected value of the put at time T is:
16 1 1 16
Elpr] = (16 — ST)EdST = 1.65; — %S% =(25.6—-128)—- (16 —5)=1.8
10 10

e. One important note in this problem is that the problem statement provides no reason to
believe that the distribution of stock payoffs in the second period is any different from the
distribution in the first period. Whether this might be a reasonable assumption might be a matter
open for debate. We assume here that the parameters of the uniform distribution in the second
period are identical to those of the first period, with the outcome of the first period not affecting
the distribution in the second. However, waiting for two periods for the terminal cash flow will
reduce the present value of the payoff. Thus, the present value of this put would simply be its

discounted value:

Co = f (St —X)q[Sr]dSr e = 1.8e~11%2 = 1.4737
X
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