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Chapter 3: Continuous Time and Continuous State Models 
 

A. Continuous Time Payment Models 
 In this section, we begin with a simple model to value a zero-coupon bond in continuous 
time in an economy with a flat yield curve (market interest and discount rates are invariant with 
respect to bond maturity). We adjust this environment to allow for a finite number of changes in 
interest rates then continuous variations in rates over time to maturity for our zero-coupon bond. 
 
Single Payment Model 
 In Chapter 2, we derived the continuous time present value for a single future payment:1 
 
(1)                                                                   𝑃𝑉 = 𝐹𝑉𝑒 , 
 
where r is the constant discount rate. Any asset making a single payment in the future can be 
valued with this model, as long as a continuous time model is appropriate for this purpose. For 
example, a T-year riskless zero-coupon bond with face value F is valued as B0 = PVB = Fe-rT. 
 
Pricing a Bond with a Continuous Deterministic Interest Rate 
 Since future interest rates are normally unknown, most models for interest rates are 
probabilistic in nature. Nevertheless, a deterministic model can serve as an excellent introduction 
to the more sophisticated models that we will cover extensively later in this text. In this section, 
we will assume that the interest rate r(t) is a known real-valued continuous function of time t. 
The rate, while not stochastic, may or may not change with time.   
 The importance of Riemann Sums and their limits extends beyond their applications to 
finding areas under curves. Many continuous valuation models are derived by first 
approximating equations using discrete models resulting in Riemann Sums. Then, taking the 
limit as n approaches infinity, we derive an appropriate continuous valuation model. Here we 
will see this principle illustrated to price a bond. 
 As we reviewed in Chapter 2, the price of a zero-coupon bond is simply the present value 
of its face value at maturity. Let F denote the face value of the bond, and assume that it is 
purchased at time 0 and matures at time T. First, we approximate this continuous model with a 
discrete model in which interest is accumulated and compounded over a total of n equally 
intervals of time from 0 to T. This means that ∆t = (T– 0)/n = T/n. The n time intervals are [ti-1,ti] 
for i=1,2,…,n with t0=0 and tn=T. Consider the last time interval [tn-1,tn]. The interest rate over 
this time period is r(tn-1). Since tn-tn-1=Δt, then the amount of interest paid on 1 unit of money 
over the time interval [tn-1,tn] equals r(tn-1)Δt. If we were to regard time tn-1 to be the present time, 
then the present value of the bond equals F(1+ r(tn-1)Δt)-1. Next, consider the time interval [tn-2,tn-

1]. If we regard time tn-2 as the present time, and repeat the same argument, then the present value 
of the bond at time tn-2 equals F(1+ r(tn-2)Δt)-1(1+ r(tn-1)Δt)-1. Continuing this process all the way 
back to time 0 and choosing Δt to be very small, then we see that we can approximate the present 
value of the continuously modeled bond by the equation: 
 

𝐵 ≈ 𝐹(1 + 𝑟(𝑡 )∆𝑡) (1 + 𝑟(𝑡 )∆𝑡) (1 + 𝑟(𝑡 )∆𝑡) ⋯ (1 + 𝑟(𝑡 )∆𝑡) . 
 

 
1 Much of the material in this chapter was adapted from Knopf and Teall [2015]. 



2 
 

 Next, take the log of both sides of the equation above: 
 

ln 𝐵 ≈ 𝑙𝑛𝐹 − 𝑙𝑛(1 + 𝑟(𝑡 )∆𝑡) − 𝑙𝑛(1 + 𝑟(𝑡 )∆𝑡) − ⋯ − 𝑙𝑛(1 + 𝑟(𝑡 )∆𝑡). 
 
 To estimate the log terms on the right-hand side of the equation, we find the second-order 
Taylor polynomial of the function f(x) = ln(1+x) about x = 0. Taking derivatives, we calculate 
that: f’(x) =(1+x)-1, f"(x) = -(1+x)-2, and so f(0) = 0, f’(0) = 1, f"(0) = -1. The function ln(1+x) 
can be estimated by its second-order Taylor polynomial about 0: 
 

𝑙𝑛(1 + 𝑥) ≈ 0 + (1)(𝑥 − 0) +
1

2
(−1)(𝑥 − 0) = 𝑥 −

1

2
𝑥 . 

 
This can be used to approximate the log terms in the estimate for lnB0: 
 

𝑙𝑛(1 + 𝑟(𝑡 )∆𝑡) ≈ 𝑟(𝑡 )∆𝑡 −
1

2
[𝑟(𝑡 )] (∆𝑡) . 

 

As ∆t  0, the term [𝑟(𝑡 )] (∆𝑡)  becomes negligible, resulting in the approximation: 

 
𝑙𝑛(1 + 𝑟(𝑡 )∆𝑡) ≈ 𝑟(𝑡 )∆𝑡. 2 

 
Using this approximation in the estimate for lnB0 gives: 
 

𝑙𝑛 𝐵 ≈ 𝑙𝑛𝐹 − 𝑟(𝑡 )∆𝑡 − 𝑟(𝑡 )∆𝑡 − ⋯ − 𝑟(𝑡 )∆𝑡 = 𝑙𝑛𝐹 − 𝑟(𝑡 )∆𝑡. 

 
Exponentiating both sides of the equation results in: 
 

𝐵 = 𝐹𝑒 ∑ ( )∆ . 
 
In the limit, as n approaches infinity, we obtain the present value of the bond: 
 

𝐵 = 𝐹𝑒 →
∑ ( )∆

. 
 
 Notice that on the right-hand side of the equation, the expression in the exponent is a 
limit of Riemann Sums with ti

* = ti-1. By the definition of the definite integral: 
 

(3)                                                                𝐵 = 𝐹𝑒 ∫ ( )
. 

 
Equation (3) gives the price of the bond. 
 

 
2 Note: WhenΔt is very small 𝑙𝑛(1 + 𝑟(𝑡 )∆𝑡) ≈ 𝑟(𝑡 )∆𝑡. As t  0, this approximation improves, as long asr 
has a continuous second derivative. 
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Pricing a Bond with a Deterministic Continuous Rate: An Illustration 
 Here, we will find the price of a 10-year bond with a face value of $100 where the 
interest rate is given by r(t) = .05 - .001t. Notice that the interest rate declines proportionally 
over time in this simple model of the term structure. Using equation (3), we can easily find the 
price of the bond: 
 

𝐵 = 100𝑒 ∫ (. . )
= 100𝑒 . . | = 100𝑒 . = $63.76 

 
B. Differential Equations in Financial Modeling: An Introduction 
 In this and the next sections, we will examine riskless securities whose prices evolve 
continuously over time. We begin with simple growth models, while introducing the technique 
of solving differential equations by separating them. Then we target our discussion to assets such 
as stock, allowing for returns in continuous time. Nest, we will examine interest rates with a 
tendency to continuously revert towards some long-term rate. In later chapters, we will examine 
each of these processes under various types of uncertainty.  
 Financial economists and practitioners are often concerned with the development or 
change of a variable or asset over time. A differential equation can be structured to model the 
change (evolution or direction) of an asset’s price over time. From this equation, a second 
equation (solution) might be derived to describe the asset’s value (state or path) at a given point 
in time. The asset price is the dependent variable which is a function of the independent variable 
(time). More generally, one is interested in determining the solution for a dependent variable as a 
function of one or more independent variables. Often, the relationship between the dependent 
variable in terms of its independent variables is described by a differential equation. A 
differential equation is defined to be an equation that relates the dependent variable and one or 
more of its derivatives. A differential equation is defined to be an equation that relates the 
dependent variable and one of its derivatives. The solution to a differential equation is an explicit 
function that, when substituted for the dependent variable in the differential equation, leads to an 
identity. The following is a simple differential equation along with its solution involving 
dependent variable x and independent variable t: 
 

(4)      = 𝑡 

 

(5)      𝑥 = 𝑡 + 𝐶 

 
where C is a constant. We verify the solution to differential equation 4 by noting that it 
represents the derivative of x with respect to t in its solution Equation 5. Equation 4 represents 
the change in variable x over time (dx = tdt). Note that this rate of change increases as t 
increases. Equation 5 represents the state or value of x at a given point in time t. Because 
equation 4 concerns only the first derivative of the function of t, it is referred to as a first order 
differential equation. 
 
Separable Differential Equations and Growth Models 
 A differential equation is said to be separable if it can be rewritten in the form g(x)dx = 
f(t)dt. A separable differential equation written in this form can be solved by the following: 
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(6)     ∫ 𝑔(𝑥)𝑑𝑥 =  ∫ 𝑓(𝑡)𝑑𝑡 
 
The following is an example of a separable differential equation: 
 

𝑑𝑥

𝑑𝑡
= 𝑡𝑥 − 2𝑡𝑥 

 
We separate as follows: 
 

𝑑𝑥

𝑑𝑡
= 𝑡(𝑥 − 2𝑥) 

 

( )
= 𝑡𝑑𝑡 or 

( )
𝑑𝑥 = 𝑡𝑑𝑡 

 
1

(𝑥 − 2𝑥)
𝑑𝑥 = 𝑡𝑑𝑡 

 
Growth Models 

Consider the following example of a separable differential equation: 
 

(7)      = 𝑟𝑥 
 
To solve this equation, we first separate the variables as follows: 
 

      𝑑𝑥 = 𝑟𝑑𝑡 

 
Next, we integrate both sides and to obtain a general solution for x: 
 

1

𝑥
𝑑𝑥 =  𝑟𝑑𝑡 

 
𝑙𝑛| 𝑥| + 𝐶 = 𝑟𝑡 + 𝐶  

 
ln| 𝑥| = 𝑟𝑡 + 𝐶 − 𝐶  

 
When we integrate both sides of the equation, one obtains arbitrary constants C1and C2. Since 
these constants are arbitrary, we can define C=C1 – C2 which is still an arbitrary constant. Thus, 
whenever we integrate both sides of an equation, we only need to add an arbitrary constant to 
one side of the equation. So, we have in this case: 
 

ln |𝑥| = 𝑟𝑡 + 𝐶. 
 

𝑒 | | = 𝑒 × 𝑒  
 

|𝑥| = 𝑒 × 𝑒  
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𝑥 = ±𝑒 𝑒  

 
(8)                                                     𝑥 = 𝐾𝑒   𝑤ℎ𝑒𝑟𝑒 𝐾 =  ±𝑒  
 
The constant K can assume any value. Thus, the general solution (or family of solutions) for our 
differential equation involves a constant that can assume any value. A particular solution results 
when K assumes a specific value. Stating the value of the function at a given moment of time is 
known as an initial condition. In our example, we have x(0) = x0. The initial condition will 
determine the constant K, and we will then be able to write down the unique solution that 
satisfies both the differential equation and the initial condition. In this case, one particular 
solution for x would be x = x0ert, where x0 is the value of x when t = 0. In any case, this type of 
differential equation is typical of those used for modeling growth. 
 
Security Returns in Continuous Time 
 Continuous time and continuous space models involve securities whose values evolve 
continuously over time (their prices can be observed at every instant) and can take on any real 
number value. Suppose that the evolution of a stock’s price is modeled by the following 
separable differential equation: 
 

(9)      = 𝜇𝑆  

 
The term µ represents the security’s drift or mean instantaneous rate of return. This differential 
equation is identical to equation (7) with x = Stand r = μ. By equation (8), the solution is:  
 
(10)      𝑆 = 𝐾𝑒  
 
 Equation 10 represents a general solution to our differential equation 9. If we set K equal 
to the stock’s price S0 at time zero (K can equal any constant), the particular solution to equation 
9 would be: 
 
(11)      𝑆 = 𝑆 𝑒  
 
Differential equations such as (9) are useful in the modeling of security prices and are adaptable 
to the modeling of stochastic (random) return processes. 
 
Illustration: Doubling an Investment Amount 
 Next, consider a security with value St in time t generating returns on a continuous basis 
such that the security’s price doubles every 7 years. Suppose that the value of this security after 
10 years were $50. What would have been the initial value S0 of this security?  

Equation (9) models this security price which can also be depicted by the security’s 
return generating process: 
 

      = 𝜇𝑑𝑡 
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The solution to this equation is obtained with Equation (11). If we substitute t = 7 into the 
solution, we obtain: 
 

𝑆 = 𝑆 𝑒 = 2𝑆  
 
Thus, µ = ln(2) ÷ 7 = .09902. With this result, we can easily solve for the security's initial value: 
 

𝑆 = 𝑆 𝑒 ×. = $50𝑒 ×. = $18.58 
 
Mean Reverting Interest Rates 
 While interest rates vary over time, they tend to be more likely to increase when they are 
“low” and decrease when they are high; that is, they tend to drift or revert to some long-term 
mean rate (long-term mean rate, not long-term rate). Suppose that μ represents the long-term 
mean interest rate, rt the short-term rate at a particular time and λ an interest rate adjustment 
mechanism (also known as a "pullback factor:" 
 
(12)                                                      𝑑𝑟 = 𝜆(𝜇 − 𝑟 )𝑑𝑡 
 
We will divide both sides by (μ – rt) to separate and integrate: 
 

𝑑𝑟

(𝜇 − 𝑟 )
= 𝜆 𝑑𝑡 

 
Since μ-rt = - (rt – μ), then: 
 

1

(𝑟 − 𝜇)
𝑑𝑟 = − 𝜆 𝑑𝑡 

 
ln|𝑟 − 𝜇| = −𝜆𝑡 + 𝐶 

 
|𝑟 − 𝜇| = 𝑒 𝑒  

 
(13)                                                         𝑟 − 𝜇 = ±𝑒 𝑒  
 
Define the constant K =±eC so that K can be any constant (positive or negative). Substituting K 
into equation (13) and solving for rt gives the solution: 
 
(14)                                                         𝑟 = 𝜇 + 𝐾𝑒 .      
 
 Suppose, for example, the interest rate 2 months ago was 18%, and currently is 16.5% as 
it drifts back to the long-term mean rate of 7%. How long will it take for the interest rate to drop 
below 10%?3 First, we use the long-term drift to obtain K = 11%: 
 

 
3 Note the similarity of this mean reverting interest structure to Newton’s Law of Cooling. Also, note that the rate 
will never actually revert all the way back to its long-term mean. 
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𝑟 = 18% = 7% + 𝐾𝑒 × . 
 
Next, we solve for the "pullback factor" λ by using the interest rate drift over the past two 
months: 
 

𝑟 = 16.5% = 7% + 11% × 𝑒  
 

16.5% − 7%

11%
= 𝑒 = .86363636 

 

 =
ln(. 86363636)

−2
=  .0733017 

 
Finally, we solve for the time (in months) for the interest rate to drop below 10%: 
 

𝑟 = 10% =  7% + 11% × 𝑒 .  
 

𝑡 =
.

𝑙𝑛 =17.7251 

 
We see now that it will take 17.7251 months from the start of the process for the interest rate to 
drift below 10%, or 15.7251 months from now. 
 
C. Continuous State Models 
 In the previous chapter, we worked with securities in single-period economies with 
multiple states. Thus far in this chapter, we have worked only with single-state models that imply 
certainty. If only a single outcome is possible, the economy is certain. Multiple states imply 
uncertainty, but pricing is still possible in complete markets. In this section, we will seek to price 
securities relative to others in an economy with infinitely many states, though we will still rely 
on the same risk-neutral pricing methodology as in the previous chapter. First, we will start with 
a few preliminaries leading to a declaration of the distribution of states. 
 
Option Pricing: The Elements 
 In this section, we will value options in single time-period frameworks with multiple 
potential outcomes in continuous outcome space. We will construct very simple probability 
distributions to compute expected values of options as functions of conditional expected stock 
values. Notice, following on our methodologies from Chapter 2, that we will work with risk-
neutral q probabilities. 
 
Expected Values of European Options 
 The expected future value of a European call is equal to its expected value conditional on 
its exercise at time T: (E[(ST - X)ST>X]) multiplied by the probability that it will be exercised 
P[(ST>X). We will define q[ST] to be the hedging probability that ST = S.4 If the range of potential 
stock prices is continuous, this expected value is written as follows: 

 
4 A hedging probability, as discussed in Chapter 2, is the probability assigned by a risk neutral investor who values 
an asset at the prevailing market price. 
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𝐸[𝑐 ] = 𝐸[𝑀𝐴𝑋[𝑆 − 𝑋), 0]] = (𝑆 − 𝑋)𝑞[𝑆 ]𝑑𝑆  

 
where q(ST) is the density associated with a stock priced at ST at time T. Note that the call’s value 
is zero when ST<X. The probability that the call will be exercised is: 
 

𝑃[𝑆 > 𝑋] =  𝑞[𝑆 ]𝑑𝑆  

 
The expected value of the stock and call given that the stock price exceeds the call exercise price 
are: 
 

𝐸[𝑆 |𝑆 > 𝑋] =  
∫ 𝑆 𝑞[𝑆 ]𝑑𝑆

∫ 𝑞[𝑆 ]𝑑𝑆
 

 

𝐸[𝑐 |𝑆 > 𝑋] =
𝐸[𝑐 ]

𝑃[𝑆 > 𝑋]
=  

∫ (𝑆 − 𝑋)𝑞[𝑆 ]𝑑𝑆

∫ 𝑞[𝑆 ]𝑑𝑆
 

 
These conditional expected values do not account for stock prices when ST<X. The expected 
value of the call is simply the product of its conditional expected value and the probability that it 
is exercised. 
 
Call Options and Uniformly Distributed Stock Prices 
 Suppose that a stock's price at time Tis expected to be uniformly distributed over the 
integer values that range from 1 to 100; that is: 
 

𝑞(𝑥) =  

1

100
,      1 ≤ 𝑥 ≤ 100

0,           𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 
Further suppose that a call option with exercise price X = 60 trades on this stock with the 
following terminal payoff function: 
 

𝑐 = 𝑀𝐴𝑋[𝑆 − 𝑋, 0] 
 
The probability that the call will be exercised is computed as follows: 
 

𝑄[𝑆 > 60] =  
1

100
𝑑𝑆 =

1

100
𝑆

100

60
  = 1 − .6 = .4 

 
The expected value of the stock, contingent on its price exceeding 60 is: 
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𝐸[𝑆 |𝑆 > 60] =  
∫ 𝑑𝑆

∫ 𝑑𝑆
=

𝑆
100

60
. 4

=
32

. 4
= 80 

 
The expected value of the call, contingent on it being exercised is: 
 

𝐸[𝑐 |𝑆 > 𝑋] =  
∫ (𝑆 − 𝑋)𝑞[𝑆 ]𝑑𝑆

∫ 𝑞[𝑆 ]𝑑𝑆
=

∫ 𝑑𝑆

∫ 𝑑𝑆
=

𝑆 − .6𝑆
100

60
. 4

=
(50 − 60) − (18 − 36)

. 4
=

8

. 4
= 20 

 
The expected value of the call at time T is: 
 

𝐸[𝑐 ] =  (𝑆 − 60)
1

100
𝑑𝑆 =

1

200
𝑆 − .6𝑆

100

60
= (50 − 60) − (18 − 36) = 8 

 
The present value of this call would simply be its discounted value: 
 

𝑐 =  (𝑆 − 𝑋)𝑞[𝑆 ]𝑑𝑆 𝑒 = 8𝑒  
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Exercises 
 
1. Find the value of a bond that has a face value of $1,000 that matures in one year. The monthly 
rate at which interest accrues at time t (in months) after origination is determined by the 
following simple model: r(t) = .007 - .00003t2. 
 
2. Which of the following are separable differential equations? 

   a.  = 𝑡𝑦 − 2𝑡 𝑦 

   b.  = 𝑡𝑦 + 𝑡  

   c.  = 𝑦 + 𝑡  

 
3.  Solve the following initial-value problem: 

𝑑𝑦

𝑑𝑡
= 𝑦𝑡, 𝑦 = 100. 

 
4.a.  Solve the following equation assuming that𝐵  = 1. This equation is used for pricing riskless 
bonds: 

𝑑𝐵

𝑑𝑡
= 𝑟 𝐵  

   b.  Solve the above equation assuming that𝐵  = 1. 
 
5.  Suppose that a statistical time series analysis revealed that an investment grows at a rate 
proportional to the square root of its current value with constant of proportionality k: 

𝑑𝑉

𝑑𝑡
= 𝑘√𝑉 𝑎𝑛𝑑 𝑉(0) = 𝑉 . 

Assume that V0 is its initial value. Find the value of this investment as a function of time. 
 
6.  Suppose that the following separable differential equation reflects the continuous growth in a 
stock’s price over time: 

      = .01𝑆 

   a.  Solve this differential equation. 
   b.  Suppose that K = 𝑆  = 50. Write the particular solution to this differential equation. 
 
7.  A T-year bond with face value BT = F has a price path given by the following differential 
equation: 

𝑑𝐵

𝐵
= 𝑟 𝑑𝑡 

Provide a general and a financially appropriate particular solution to this differential equation. 
 
8.  Suppose that a stock's price grows over time at rate  as the firm produces profit, but the firm 
also pays a continuous dividend at a rate .  

a. Write a differential equation to model the stock price over time. 
b. What is the solution to this differential equation. 
c. Suppose that K = 𝑆  = 50,  = .05 and = .02. Write the particular solution to this 
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differential equation. 
 
9.  Suppose that a particular process St satisfies the differential dSt = μ(M – St)dt and initial value 
S0 with 0 < S0< M. Find the solution for St  that is valid as long as 0 < St< M. 
 
10.  Suppose a particular contract calls for accruals on an account to be credited such that over 
the time interval [𝑡, 𝑡 + 𝑑𝑡], where 𝑡 is time in years, the amount that is credited equals 
$(10,000 + 500𝑡)𝑑𝑡. If these credits are discounted at an annual rate of 4%, what is the present 
value of the account after T years? 
 
11.  The People’s Republic of Chrystal seeks to maintain a target exchange rate of μ = PRC6 
relative to the U.S. dollar. Should the actual exchange rate r differ from its target rate, it will tend 
to drift towards the target rate as per the following function where λ and eK are constants: 

|𝜇 − 𝑟| = 𝑒 𝑒  
Suppose the exchange rate 3days ago was 6.5 and is currently 6.4. How long will it take for the 
rate to drop below 6.1? 
 
12.  Suppose that short term interest rates follow the following mean-reverting process.: 

𝑑𝑟 = 𝜆(𝜇 − 𝑟 )𝑑𝑡 
The long-term mean interest rate μ equals .06, the short-term rate r0 currently equals .02, and the 
"pullback-factor" λ equals .4.  
     a.  What will be the short-term rate r1 in one year? 
     b.  What will be the short-term rate r2 in two years? 
 
13.  Here, we introduce the logistic growth function. Suppose that μ represents the long-term 
mean interest rate, r the rate at a particular time and λ an interest rate adjustment mechanism: 

𝑑𝑟 = 𝜆𝑟(𝜇 − 𝑟)𝑑𝑡 
1. Is this differential equation separable? If so, demonstrate. 
2. Solve this differential equation. 
3. Suppose that the People’s Republic of Chrystal seeks to maintain a target exchange rate of 

μ = PRC6 relative to the U.S. dollar, the adjustment mechanism λ in its logistic growth 
function is known to be .007 and the current exchange rate is 5. Find an equation that 
provides the exchange rate for any time t. 

4. What is the exchange rate 10 days from now? 
 
14.  Suppose that a stock's price at time T is expected to be uniformly distributed over the range 
10 to 20; that is: 

𝑞(𝑥) =  

1

10
,      10 ≤ 𝑥 ≤ 20

0,           𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Further suppose that a put option with exercise price X = 16 trades on this stock with the 
following terminal payoff function: 

𝑝 = 𝑀𝐴𝑋[𝑋 − 𝑆 , 0] 
   a.  Calculate the probability that the put will be exercised. 
   b.  Calculate the expected value of the stock's price contingent on it exceeding the exercise 
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price of the put. 
   c.  Calculate the conditional expected value of the put contingent on it being exercised. 
   d.  Calculate the expected future value of the put. 
   e.  If T = 2 and r = .1, what is the current value of the put? Assume that the stock price after the 
first period does not affect the parameters of the distribution of stock prices for the second 
period. 
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Solutions 
 
1.In this problem, F = 1000, T =12, and r(t) = .007-.00003t2. Using equation (3), the price of the 
bond is: 

𝐵 = 1,000𝑒 ∫ . .
= 1,000𝑒 . . | = 1,000𝑒 . = $935.46 

 
2.a.  No – We cannot separate y and t variables on two sides of the equation. 
   b. Yes - The right side factors as t(y + 1) 
   c.  No - The right side cannot be factored as a product of a function of t and a function of y 
 
3.   First, separate by multiplying both sides of the differential equation by dt and divide both 
sides by y. Then integrate to obtain: 

𝑑𝑦

𝑦
= 𝑡𝑑𝑡. 

𝑙𝑛𝑦 =
1

2
𝑡 + 𝐶 

since y(0)=100>0. 
 

𝑦 = 𝑒 = 𝐾𝑒 . 
The initial condition implies 

100 = 𝐾𝑒 = 𝐾. 
Thus 

𝑦 = 100𝑒 . 
Alternatively, it is sometimes convenient to work out the solution by using a definite integral 
rather than an indefinite integral. So, we could also find the solution by the following steps: 

𝑑𝑦

𝑦
= 𝑡𝑑𝑡. 

Observe that to integrate in the variable t from 0 to T means that we are integrating in the 
variable y from y(0) = 100 to 𝑦 . 

𝑙𝑛 𝑦 − 𝑙𝑛 100 =
1

2
𝑇 . 

𝑙𝑛
𝑦

100
=

1

2
𝑇 . 

𝑦

100
= 𝑒 . 

𝑦 = 100𝑒 . 
 
4.a. To solve this equation, we first separate the variables as follows: 

      𝑑𝐵 = 𝑟 𝑑𝑡 

Next we change the variable from t to s and integrate both sides from 0 to t: 

1

𝐵
𝑑𝐵 = 𝑟 𝑑𝑠 
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𝑙𝑛 𝐵 − 𝑙𝑛𝐵 = 𝑟 𝑑𝑠 

ln ( 𝐵 /𝐵 ) = 𝑟 𝑑𝑠 

𝑒 ( / ) = 𝑒∫  

𝐵 /𝐵 = 𝑒∫  

𝐵 = 𝐵 𝑒∫ . 
Since B0 = 1, then 

𝐵 = 𝑒∫ . 

    b.  1 = 𝐵 = 𝐵 𝑒∫ . 

𝐵 = 𝑒 ∫  

𝐵 = 𝑒 ∫ 𝑒∫ = 𝑒 ∫ ∫ = 𝑒∫  
 
5.  Let V =Vt denote the value of the investment at time t. The problem states that 

𝑑𝑉

𝑑𝑡
= 𝑘√𝑉 𝑎𝑛𝑑 𝑉(0) = 𝑉 . 

Multiplying both sides of the first equation by dt and dividing both sides by √𝑉, we have: 
𝑑𝑉

√𝑉
= 𝑘𝑑𝑡. 

Next we integrate both sides of the equation from 0 to T: 

𝑑𝑉

√𝑉
= 𝑘𝑑𝑡. 

Evaluating the integrals, we see that 
2 𝑉 − 2 𝑉 = 𝑘𝑇. 

Algebraically solving for VT gives the solution to be 

𝑉 = (
𝑘𝑇

2
+ 𝑉 ) . 

 
6.a.  In this equation, f(t) = .01 and g(S) = 1/S, which separates as follows: 

      𝑑𝑆 = .01𝑑𝑡 

      𝑔(𝑆)𝑑𝑆 = 𝑓(𝑡)𝑑𝑡 
We integrate both sides to obtain a general solution for S: 

1

𝑆
𝑑𝑆 =  . 01𝑑𝑡 

ln 𝑆 = .01𝑡 + 𝐶 
𝑒 = 𝑒 . + 𝑒  

𝑆 = 𝐾𝑒 .   𝑤ℎ𝑒𝑟𝑒 𝐾 =  𝑒  
   b.  A particular solution results when K assumes a specific value, say K = 𝑆  = 50. In this case, 
the particular solution for S could be St = 50e.01t.  
 
7.  The solution to this differential equation gives the bond's price at time t will be obtained by 
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the following: 

      ∫ = ∫ 𝑟 𝑑𝑡 

These integrals are solved as follows: 
ln 𝐵 = 𝑟 𝑡 + 𝐶 

We write the anti-logs of the results of both sides as: 
𝑒 = 𝑒  

      𝐵 = 𝐾𝑒  
where K = eC.This equation represents a general solution to our differential equation. Since BT = 
F, evaluating the solution at t = T gives: 𝐹 = 𝐾𝑒 . 
Solving for K we have: 

𝐾 = 𝐹𝑒 . 
Substituting the value for K into the general solution for Bt we obtain the desired solution: 

𝐵 = 𝐹𝑒 𝑒 = 𝐹𝑒 ( ). 
 
8.a.  The differential equation is as follows: 

𝑑𝑆

𝑑𝑡
= (𝜇 − )𝑆  

   b.  In this equation, f(t) = - and g(S) = 1/S, which separates as follows: 

      𝑑𝑆 = ( − )𝑑𝑡 

We integrate both sides to obtain a general solution for S: 
1

𝑆
𝑑𝑆 =  ( − )𝑑𝑡 

ln 𝑆 = ( − )𝑡 + 𝐶 
𝑒 = 𝑒( ) + 𝑒  

𝑆 = 𝐾𝑒( )   𝑤ℎ𝑒𝑟𝑒 𝐾 =  𝑒  
c.  A particular solution results when K assumes a specific value, say K = 𝑆  = 50. In this case, 
the particular solution for S could be St = 50e(.05-.02)t.  
 
9.  First, divide both sides of the differential by M – St to obtain: 

𝑑𝑆

𝑀 − 𝑆
= 𝜇𝑑𝑡. 

Since, by the chain and log rules, the integral of dSt / (M – St) equals – ln(M – St), we will use the 
expression ln(M – St) to obtain the solution for St. The differential of the function f(St) = ln(M – 
St) is: 

𝑑[𝑙𝑛(𝑀 − 𝑆 )] =
−1

𝑀 − 𝑆
𝑑𝑆 = −𝜇𝑑𝑡. 

Changing the variable from t to s and integrating from 0 to t results in 
𝑙𝑛(𝑀 − 𝑆 ) − 𝑙𝑛(𝑀 − 𝑆 ) = −𝜇𝑡 

or 

𝑙𝑛
𝑀 − 𝑆

𝑀 − 𝑆
= −𝜇𝑡. 

Exponentiating we have: 
𝑀 − 𝑆

𝑀 − 𝑆
= 𝑒 . 
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Solving for St gives: 

𝑆 = 𝑀 − (𝑀 − 𝑆 )𝑒 . 
 
10.  First, the present value of the fund over T years is: 

𝑃𝑉[0, 𝑇] = ∫ (10,000 + 500𝑡)𝑒 . 𝑑𝑡. 
We use the integration by parts formula: 

𝑢𝑑𝑣 = 𝑢𝑣| − 𝑣𝑑𝑢. 

For this problem choose 
𝑢 = 10,000 + 500𝑡 𝑎𝑛𝑑 𝑑𝑣 = 𝑒 . 𝑑𝑡, 

so that 

𝑑𝑢 = 500𝑑𝑡 𝑎𝑛𝑑 𝑣 = 𝑒 . 𝑑𝑡 = −25𝑒 .  

Substituting these terms into the integration by parts formula gives 

𝑃𝑉[0, 𝑇] = −25(10,000 + 500𝑡)𝑒 . | + 12,500𝑒 . 𝑑𝑡 

=  −250,000𝑒 . + 12,500𝑇𝑒 . + 250,000 −
12,500

. 04
𝑒 . +

12,500

. 04
 

=  −250,000𝑒 . + 12,500𝑇𝑒 . + 250,000 − 312,500𝑒 . + 312,500 
=  −562,500𝑒 . + 12,500𝑇𝑒 . + 562,500 

= 562,500 1 − 1 +
𝑇

45
𝑒 . . 

 
11. Since r0 = 6.5 > μ = 6, then |μ-rt| = -(μ-rt) = rt – μ. So the solution takes the form: 

𝑟 = 𝜇 + 𝑒 𝑒 . 
  We evaluate the solution at t = 0 and use our initial condition in order to determine eK: 

𝑟 = 𝜇 + 𝑒 𝑒 × . 
6.5 = 6 + 𝑒  

Thus, eK = .5. Next, we solve for λ = -0.074381184 by using the exchange rate drift over the past 
3 months: 

𝑟 = 6.4 = 6 + .5 × 𝑒  
6.4 − 6

. 5
= 𝑒 = .8 

Finally, we find that it takes t = 21.638 days from 3 days ago for the exchange rate to drop to 6.1: 
𝑟 = 6.1 =  6 + .5 × 𝑒 .  

𝑡 =
.

𝑙𝑛
.

.
 = 21.638 

 
12.a.  First, we solve our differential equation as follows: 

𝑑𝑟 = 𝜆(𝜇 − 𝑟 )𝑑𝑡 
𝑑𝑟

(𝜇 − 𝑟 )
= 𝜆 𝑑𝑡 
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1

(𝜇 − 𝑟 )
𝑑(𝜇 − 𝑟 ) = − 𝜆 𝑑𝑡 

𝑙𝑛|𝜇 − 𝑟 | = −𝜆𝑡 + 𝐾 
|𝜇 − 𝑟 | = 𝑒 𝑒  

Since μ>r0, then |μ-rt|=μ-rt. Solving for rtin the solution above gives: 
𝑟 = 𝜇 − 𝑒 𝑒 . 

We use the initial condition to determine eK: 
. 02 = .06 − 𝑒 , 

so that eK =.04. The particular solution for the short-term rate is: 
𝑟 = .06 − .04𝑒 . . 

The short-term rate in one year will be r1 = .06 -.04e-.4×1=.03319. 
     b.  r2 =.06-.04e-.4×2=.042. 
 
13.a.  The equation is separable. We will divide both sides by r(μ – r) to separate and integrate: 

𝑑𝑟

𝑟(𝜇 − 𝑟)
= 𝜆 𝑑𝑡 

    b.  Using partial fractions, this is written: 
1

𝜇𝑟
+

1

𝜇(𝜇 − 𝑟)
𝑑𝑟 = 𝜆 𝑑𝑡 

It is easy to start with the equation immediately above, find a common denominator for the terms 
being added and verify that it equals the one above it in part a. For now, 0 < r <, leading to a 
general solution for the logistic equation: 

1

𝜇
𝑙𝑛|𝑟| −

1

𝜇
𝑙𝑛|𝜇 − 𝑟| = 𝜆𝑡 + 𝐾 

ln 𝑟 − ln(𝜇 − 𝑟) = 𝜆𝜇𝑡 + 𝜇𝐾 
𝑒 ( ) = 𝑒 𝑒  

𝑟

(𝜇 − 𝑟)
= 𝑒 𝑒  

𝑟 = (𝜇 − 𝑟)𝑒 𝑒  
𝑟(1 + 𝑒 𝑒 ) = 𝜇𝑒 𝑒  

𝑟 =
𝜇𝑒 𝑒

(1 + 𝑒 𝑒 )
 

    c.  Our solution to the logistic equation is: 

𝑟 =
6𝑒 𝑒 . ×

(1 + 𝑒 𝑒 . × )
 

The initial condition is: 

𝑟 = 5 =
6𝑒 𝑒 . × ×

(1 + 𝑒 𝑒 . × × )
=

6𝑒

(1 + 𝑒 )
 

which implies that eK = 5/(6-5)=5, which means that: 

𝑟 =
30𝑒 . ×

1 + 5𝑒 . ×
 

  d.  Simply substitute 10 for t in part c: 

𝑟 =
30𝑒 . × 

1 + 5𝑒 . × ×
= 5.30312 
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14.a.  The probability that the put will be exercised is computed as follows: 

𝑃[𝑆 < 16] =  
1

10
𝑑𝑆 =

1

10
𝑆

16

10
= 1.6 − 1 = .6 

    b.  The expected value of the stock, contingent on its price exceeding 16 is: 

𝐸[𝑆 |𝑆 > 16] =  
∫ 𝑑𝑆

∫ 𝑑𝑆
=

𝑆
20

16
. 4

=
20 − 12.8

. 4
= 18 

    c.  The expected value of the put, contingent on it being exercised is: 

𝐸[𝑝 | 𝑆 < 𝑋] =  
∫ (𝑋 − 𝑆 )𝑞[𝑆 ]𝑑𝑆

∫ 𝑞[𝑆 ]𝑑𝑆
=

∫ 𝑑𝑆

∫ 𝑑𝑆
=

1.6𝑆 − 𝑆
16

10
. 6

=
(25.6 − 12.8) − (16 − 5)

. 6
=

1.8

. 6
= 3 

    d.  The expected value of the put at time T is: 

𝐸[𝑝 ] =  (16 − 𝑆 )
1

10
𝑑𝑆 = 1.6𝑆 −

1

20
𝑆

16

10
= (25.6 − 12.8) − (16 − 5) = 1.8 

    e.  One important note in this problem is that the problem statement provides no reason to 
believe that the distribution of stock payoffs in the second period is any different from the 
distribution in the first period. Whether this might be a reasonable assumption might be a matter 
open for debate. We assume here that the parameters of the uniform distribution in the second 
period are identical to those of the first period, with the outcome of the first period not affecting 
the distribution in the second. However, waiting for two periods for the terminal cash flow will 
reduce the present value of the payoff. Thus, the present value of this put would simply be its 
discounted value: 

𝑐 =  (𝑆 − 𝑋)𝑞[𝑆 ]𝑑𝑆 𝑒 = 1.8𝑒 . × = 1.4737 

 


