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Chapter 7: Stochastic Processes: Introduction for Option Pricing 
 

A. Random Walks and Martingales 

 In the previous two chapters, we priced securities in the marketplace as functions of pure 

security prices, synthetic probabilities, interest rates and discount functions. Here, we consider 

the functions that drive the random natures of one or more these values or functions. The 

mathematics in this Section A are presented rather formally, which will be more helpful later in 

this chapter when we begin to discuss Brownian Motion and Itô Processes, the stochastic 

processes that underly important continuous time pricing frameworks such as the Black Scholes 

model. 

 

Stochastic Processes: A Brief Introduction 

 A stochastic process is a sequence of random variables Xt defined on a common 

probability space (,ℱ,ℙ) and indexed by time t.1 In other words, a stochastic process is a 

random series of values Xt sequenced over time. The values of Xt() as t varies define one 

particular sample path of the process associated with the state or outcome   . The terms 

X(,t) and Xt() are used synonymously here. 

  A discrete time process is defined for a countable set of time periods. This is 

distinguished from a continuous time process that is defined over an interval of the real line that 

consists of an infinite number of times. The state space X is the set of all possible values of the 

stochastic process {Xt}: 

 

X = {Xt() for some    and some t} 

 

The state space can be discrete (countable) or continuous. For example, if a bond price changes 

in increments of eighths or sixteenths, the state space for prices of the bond is said to be discrete. 

The state space for prices is continuous if prices can assume any real value. 

 The value of a real-world security is its value at any particular time, which depends on all 

past and present information. As we know, the set of possible events that determine the value of 

a random variable Xt is called its σ-algebra, which we will denote by ℱt. This motivates the 

following definitions: First, a filtration is a sequence of information sets indexed over time, so 

that each information set contains the required history for valuation at that time. More formally, 

a filtration is a sequence of -fields ℱt such that ℱ0  ℱ1  ⋯   ℱ𝑡  ⋯ ℱ . A sequence of 

filtrations ℱt for a σ-algebra ℱ is a sequence of σ-algebras with the property: 2 

 

ℱ0  ℱ1  ℱ2   ⋯   ℱ  

 

for discrete processes. Typically, the σ-algebras ℱ𝑡 are getting larger as they evolve in time t. 

Similarly, continuous processes will have the following property: 

 

⋃ ℱ𝑠

𝑠<𝑡

 ℱ𝑡 ℱ  

 
1 See Section C in Chapter 2 for an introduction to probability spaces. Much of the content in this chapter is adapted 

from Knopf and Teall [2015]. 
2 Filtrations can be characterized for our purposes as the information set required for valuation at any time or state.  
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for all 0  s  t. 

 A stochastic process Xt is said to be adapted to a filtration {ℱ𝑡} if every measurable event 

for the random variable Xt is in the σ-algebra ℱ𝑡. Filtrations arise when securities are modeled by 

stochastic processes, because as time passes, the number of possibilities for the history of the 

security grows. In effect, a filtration represents the increasing stream of information (history) 

concerning the process. 

 

Illustration: Filtrations in a Two time-period Random Walk 

 Suppose a stock has an initial price of X0 at time 0, which, at time 1, will either increase 

or decrease by 1. Independently, the same potential price changes will occur at time 2. All of the 

possible distinct price 2-period change outcomes for the stock to time 2 are (1,1), (1,-1), (-1,1), 

and (-1,-1). For example, (1,-1) will mean the stock’s price increased by 1 at time 1 and 

decreased by 1 at time 2. The sample space for this process is Ω = {(1,1), (1,-1), (-1,1), (-1,-1)}. 

 Actually, this stochastic process could have been defined for all times t = 0, 1, 2, 3, … . 

The example above is just for illustrative purposes. Suppose that the investor sells her stock at 

time 2, then keeps the proceeds in cash. In this scenario, for each time period t = 3, 4, …, the 

value of the stock Xt = X2. This would then conform to the proper definition of a stochastic 

process. The σ-algebras ℱt = ℱ2 for all t = 3, 4,… . 

The price of the stock Xt for t = 0, 1 and 2 is adapted to a filtration that we will now 

describe. At time t = 0, the stock price is known. Since there has been no increase or decrease in 

the price at time 0, the time zero σ-algebra consists simply of: 

 

ℱ0 = {∅,}. 

 

 At time 1, we have acquired information regarding whether the price increased or decreased by 

1. At this time, the sets {(1,1), (1,-1)} and {(-1,1), (-1,-1)} are added to the σ-algebra such that 

the σ-algebra at time 1 becomes: 

 

ℱ1 = {∅, {(1,1), (1, −1)}, {(−1,1), (−1, −1)},}. 

 

We cannot decouple the outcome (1,1) from the outcome (1,-1) in the σ-algebra ℱ1 because we 

are unable to distinguish these two outcomes at time 1. That is, at time one, the outcome for time 

two has yet not occurred and is still unknown, therefore and not part of the time 1 information 

set.  

 At time 2, each of the separate outcomes (1,1), (1,-1), (-1,1), (-1,-1) are possible. Thus, 

ℱ2 consists of the power set of  = {(1,1), (1,-1), (-1,1), (-1,-1)}: 

 

ℱ2 =

{∅ {(−1, −1)}

{(1,1)} {(1,1), (1, −1)}

{(1, −1), (−1,1)} {(1,1), (1, −1), (−1, −1)}
{(1, −1), (−1, −1)} {(1,1), (−1,1), (−1, −1)}

{(1, −1)} {(1,1), (−1,1)}
{(−1,1)} {(1,1), (−1, −1)}

{(−1,1), (−1, −1)} {(1, −1), (−1,1), (−1, −1)}
{(1,1), (1, −1), (−1,1)} Ω}

 

 

Note that there are 24 = 16 members of this σ-algebra. Observe that ℱ0  ℱ1  ℱ2 and define ℱ = 

ℱ2. Thus, { ℱ0, ℱ1, ℱ2}is the filtration for this 2-period stock process. 
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Random Walks and Markov Processes 

A discrete Markov process, often called a discrete random walk, is a non-continuous 

stochastic process in which the probability evolves to a given state at time t depends only on its 

immediately prior state at time t-1 and not on the remainder of its history. A Markov process is 

characterized by the condition 

 

(1)                               𝑃(𝑋𝑡|𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋0) = 𝑃(𝑋𝑡|𝑋𝑡−1).                     
 

The following provides an interpretation of this condition. Given the entire history of the process 

Xt from its start to time t – 1; namely, X0, X1, …, Xt-1, the probability that that the process will be 

in state Xt at the next moment time t depends only on its present state Xt-1. This property can be 

described as saying that a Markov Process is memoryless. 

 It can be proven that condition (1) above implies the more general condition: 

 

(2)                                             𝑃(𝑋𝑡|𝑋0, 𝑋1, … , 𝑋𝑠) = 𝑃(𝑋𝑡|𝑋𝑠) ∀𝑠 < 𝑡.                       
 

This characterization of a Markov Process can be generalized further to the condition: 

 

(3)                                            𝑃(𝑋𝑡|ℱ𝑠) = 𝑃(𝑋𝑡|𝑋𝑠)     ∀𝑠 < 𝑡.  
 

 Recall that ℱ𝑠 is a σ-algebra of sets whose elements are drawn from all possible outcomes 

up to time s. Thus, if ℱ𝑠 is given, then we know which particular history of outcomes occurred to 

time s. This information determines the values of Xs, Xs-1, …,X0, so that condition (3) implies 

condition (2). Condition (3) is in some sense the most natural of the three conditions in pricing 

securities in the market. That is, we typically wish to project some future price Xt based on some 

history to time s prior to time t. The σ-algebra ℱ𝑠 denotes all possible events that can occur in the 

market up to time s. Any security Xs that we wish to price in this market will be a random 

variable with ℱ𝑠 as its σ-algebra. These concepts will be illustrated shortly when we consider a 

family of Markov Processes modeling security prices. 

 Let Xt be a stochastic process over continuous time t, and random variables Xt be 

continuous. We define a continuous Markov Process by the condition: 

 

(4)                                   𝑃(𝑋𝑡 ∈ 𝐴|ℱ𝑠) = 𝑃(𝑋𝑡 ∈ 𝐴|𝑋𝑠) ∀𝑠 < 𝑡                    
 

where A is any measurable set on the real line. In equation (4), the parameters s, and t take on 

nonnegative real numbers. Note that it is not sufficient to define the probabilities for only single 

outcomes Xt as we did for the case when Xt is discrete, since the probability of any given single 

outcome is normally equal to 0 for continuous random variables Xt. 

 

Illustration: The Random Walk  

Consider the following type of random walk. 3 A person starts a walk at a certain integer 

position X0 along an x-axis (…, -3, -2, -1, 0, 1, 2, 3, …) and at every moment (t = 0, 1, 2, …) , 

she chooses to take either one step to the right with probability p (0 < p <1) or one step to the left 

 
3 Pearson [1905] described the optimal search process for finding a drunk left in the middle of a field. Left to stagger 

one step at a time in an entirely unpredictable fashion, she is more likely to be found where she was left than in any 

other position on the field. 
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with probability 1-p, such that each step to the right or left is independent of prior steps. Let Zi be 

the random variable that equals 1 if the step is to the right at time i and -1 if the step is to the left 

at time i. It is obvious that if each step is taken independently of any previous steps, then P(Zs = 

a, Zt = b) = P(Zs = a)P(Zt = b) when s ≠ t. Thus, the random variables {Zt} are pairwise 

independent. Let Xt denote the position of the person on the x-axis after t steps have been taken. 

Notice that Zt equal the increments (differences) Zt = Xt – Xt-1 in the position of the person from 

time t-1 to time t. Thus, Xt can be expressed as Xt = X0 + Z1 + Z2 + ...+Zt. When the increments 

{Zt} are pairwise independent, we will prove below that: 

 

𝑃(𝑋𝑡|𝑋0, 𝑋1, … , 𝑋𝑡−1) = 𝑃(𝑋𝑡|𝑋𝑡−1).                     
 

This result is intuitively clear. If each step is independent of the previous steps, then the 

probability that the person will be at a certain position Xt at time t is only dependent upon her 

position Xt-1 at the previous step. The rest of the past history of her walk is superfluous 

information. Thus, this random walk is a Markov Process. Random walks are of particular 

interest since they can serve as models of security prices. 

 

Martingales and Submartingales 

 A discrete martingale process is a stochastic process Xt with the properties  

 

1. 𝐸[𝑋𝑡|𝑋0, 𝑋1, … , 𝑋𝑡−1] = 𝑋𝑡−1 

 

2. 𝐸[|𝑋𝑡|] < ∞ 

 

for all t = 1, 2, … . In the first property above, regard X0, X1, …, Xt-1 as fixed (history) and Xt as a 

random variable. Thus, a martingale is a process whose future variations have no specific 

direction based on the process history (X0, X1,…, Xt-1). A martingale is said to be a "fair game" 

and will not exhibit consistent trends either up or down. The first property above implies the 

following: 

 

(1’)                                  𝐸[𝑋𝑡|𝑋0, 𝑋1, … , 𝑋𝑠] = 𝑋𝑠 ∀𝑠 < 𝑡.                            
 

Since this property (1') is more general than property 1 above, we can use it to characterize the 

martingale instead in our discrete martingale definition. 

 In the case where Xt is a continuous time martingale, the second property must apply for 

all positive real numbers t, and the first property is replaced with E[Xt | Xi, 0 ≤ i ≤ s] = Xs for all s 

< t and all positive numbers t.4 Observe that the definitions of a discrete time martingale and a 

continuous time martingale are equivalent except that the discrete case indices i, s, and t assume 

integer values, while the continuous case takes on all real number values. Analogous to our 

scenario involving Markov Processes, the first property of a martingale can be replaced with the 

more general condition: 

 

 
4 The second property is a technical condition that will be satisfied for every stochastic process that we study in this 

text. Thus, we will focus only on the first condition, excepting for Brownian motion, the most important continuous 

process in finance, in which case we will focus on both.    
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(5)           𝐸[𝑋𝑡|ℱ𝑠] = 𝑋𝑠 ∀𝑠 < 𝑡. 
 

In each example involving a martingale in this book, the two expressions E[Xt | Xi, 0≤ i ≤ s] and 

[𝐸[𝑋𝑡|ℱ𝑠] will be equivalent. Thus we will use these notations interchangeably. Since Zt = Xt – 

Xt-1, then for the discrete case we can also express the first martingale property above as follows: 

 

𝐸[𝑋𝑡|𝑋0, 𝑍1, 𝑍2, … , 𝑍𝑡−1] = 𝑋𝑡−1. 
 

 Consider the random walk described above with jumps equal to +1 with probability p and 

-1 with probability (1-p). Since E[Zt] = 1p + (-1)(1-p) = 2p - 1, E[XtX0,X1,X2,...,Xt-1] = E[XtXt-

1] = Xt-1 + 2p - 1. Thus, the random walk is a martingale when p = 1/2. Since E[XtX0,Z1,Z2,...,Zt-

1] = Xt-1 when p = 1/2, a martingale's future has no specific direction in its trend from its present 

state. We also need to verify that the second condition E[|Xt|] < ∞ is satisfied. In this case, this is 

obvious since in time t, the farthest the random walk could have taken us would be t steps from 

the starting position at S0. Thus, E[|Xt|] ≤ MAX[|S0 + t|,|S0 – t|]. Whenever we have a discrete 

process in which the change in the value of the process at each time increment is finite, then the 

second condition to be a martingale (submartingale or supermartingale to be covered next) is 

trivially satisfied. 

 

Submartingales 

 A submartingale with respect to probability measure ℙ is a stochastic process Xt in which 

the first property to be a martingale is replaced with: 

 

Eℙ[XtX0, X1, X2, ..., Xt-1]  Xt-1 

 

A submartingale will tend either to trend upward over time or is a martingale. The definition of a 

supermartingale replaces the greater than or equal inequality above with a less than or equal 

inequality. A supermartingale will tend to trend downward over time or is a martingale.5 In our 

random walk example above, Xt is a submartingale when p ≥ 1/2 and is a supermartingale when 

p ≤ 1/2. Stock prices are often modeled as submartingales because they trend upwards due to the 

time value of money and investor risk aversion. 

 

Equivalent Probabilities and Equivalent Martingale Measures 

 In Chapter 2, we used the concept of Arrow-Debreu (pure) securities and risk-neutral 

probabilities to begin to introduce and illustrate the concept of arbitrage-free pricing. 

Alternatively, physical probabilities are measures that we assign to outcomes that reflect the 

likelihoods of these outcomes actually occurring. Physical probabilities range between zero and 

one, they sum to one and their levels increase as presumed likelihoods of events increase. 

However, prices of assets need not be functions of these physical probabilities or the expected 

values based on physical probabilities. First, it might be perfectly reasonable to expect that asset 

prices will reflect investor preferences, heterogeneous expectations, risk aversion, lexicographic 

preference orderings, portfolios and other factors that will be unrelated to physical probabilities. 

For example, with heterogeneous investor expectations, prices could easily reflect one investor's 

probability estimates, but not another's. In fact, prices might not fully reflect any individual 

 
5 A submartingale has increments whose expected values equal or exceed zero; expected values of increments from 

a supermartingale are equal to or less than zero. Martingales are also both submartingales and supermartingales. 



6 

 

investor's expectations. In addition, as attractive as models based on physical probabilities might 

be, there is no market mechanism that forces prices to equal expected values based on physical 

probabilities. 

 On the other hand, risk neutral probabilities arise from the strongest of financial forces - 

arbitrage. Risk neutral probabilities are constructed from prices such that any violation of these 

prices or the risk neutral probabilities that they imply will create arbitrage opportunities. Thus, 

pricing relationships implied by appropriate functions of risk neutral probabilities must hold in 

the absence of arbitrage opportunities. Strictly speaking, from a mathematical perspective, risk 

neutral probabilities are probabilities in that they range from 0 to 1 and sum to 1 just as do 

physical probabilities, it is not necessary that they bear strong relationships to physical 

probabilities. Thus, risk-neutral probabilities do not strictly measure our opinions of likelihood in 

the way that physical probabilities do. However, they still resemble probabilities, they are 

essential to arbitrage-free pricing, and they can still be treated as probabilities for relative pricing 

purposes. 

 

Numeraires 

 Thus far we have expressed all asset values in terms of dollars and returns relative to 

some currency or monetary unit such as dollars. Thus, the monetary unit (e.g., dollar) served as 

the numeraire, which is simply the unit in which values are expressed. However, we can just as 

easily express values in terms of other currencies, other securities such as pure securities as we 

did in Chapter 3, or riskless bonds as we will shortly. We can also express returns in terms of 

units of other securities such as forward contracts or even stocks. Flexibility in selecting the 

numeraire and an associated equivalent martingale measure affords us the ability of being able to 

use valuation techniques that otherwise would not be available or would be more complicated. 

 

Equivalent Probability Measures 

 Recall that a probability measure ℙ has the property that it is a mapping from an event 

space such that all events  have probabilities p[]  [0, 1]. An equivalent probability measure 

ℚ has the same null space as ℙ. That is, two probability measures are said to be equivalent (ℙ ~ 
ℚ) if the set of events that have probability 0 under measure ℙ (say, the physical probability 

measure) is the same as that set under the second measure ℚ (say, the risk-neutral probability 

measure). This also implies that ℚ << ℙ  (ℚ is absolutely continuous with respect to ℙ, which 

means that p() = 0  q() =0) and ℙ << ℚ  (ℙ is absolutely continuous with respect to ℚ; q() 

= 0  p() =0).6 This implies that an equivalent probability measure is consistent with respect to 

which outcomes are possible. However, the actual non-zero probabilities assigned to events 

might differ. 

 

Equivalent Martingale Measures 

 A probability measure ℚ is an equivalent martingale measure (also called a risk-neutral 

measure) to ℙ in a complete market if ℚ and ℙ are equivalent probability measures, and the 
price of every security in the market (using the riskless bond as the numeraire) is a 
martingale with respect to the probability measure ℚ. We will examine an illustration of this 

later in the chapter. In a complete market in which there are no arbitrage opportunities, there will 

always exist a unique equivalent martingale measure. This measure can be used to obtain risk-

 
6 If ℚ << ℙ and ℙ << ℚ, then ℚ ~ ℙ.   
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neutral pricing for every security in that market. There are a number of observations that relate to 

equivalent martingale measures: 

 

1. For the finite outcome case, we will define a complete market to be one in which every 

security in the market can be expressed as a portfolio of a finite number of pure 

securities. The set of all possible securities in the complete market forms a vector space, 

and the set of pure securities of say n linearly independent vectors forms a basis for this 

vector space. Once we have determined the price for each pure security with respect to 

the equivalent martingale measure ℚ, it is then a simple matter to find the price of any 
other security as a linear combination of the pure security prices (using the riskless 
bond as the numeraire). 

2. Since the equivalent martingale measure ℚ is unique, one is free to choose any set of 
n linearly independent securities that form a basis for the market and that have 
already been priced in the market in order to construct the measure ℚ. It may seem 
quite surprising that the measure ℚ turns out to be the same regardless of which 
basis of securities we choose to construct the measure ℚ. This follows because of 
the linear relationship between the various securities' payoff and price vectors in a 
no-arbitrage market. 

3. A market has a unique equivalent martingale measure if and only if it is both 
complete and arbitrage-free.   

4. To use the riskless bond as the numeraire is equivalent to discounting the security 
by the riskless rate to obtain the present value of the security. The discounted 
security will be a martingale with respect to the measure ℚ, and the risk-neutral 
price of the security is the expected value of the discounted security. 

5. Since the discounted security price is a martingale, its expected value is consistent 
with the same return as the return on the riskless bond. If this were not the case, 
there would be an opportunity for arbitrage.   

 

Pricing with Submartingales 

 We generally expect that financial securities requiring initial cash outlays will price as 

submartingales with respect to money because of the time value of money; investors demand 

compensation for giving up alternative uses of their initial investments: 

 

𝐸ℙ[𝑆𝑡+𝑡] > 𝑆𝑡 

 

However, if there exists an equivalent probability measure ℚ such that discounted security prices 

can be converted into martingales, this will ease the process of valuing derivative instruments 

relative to their underlying securities: 

 

𝐸ℚ [
𝑆𝑡+𝑡

(1 + 𝑟)∆𝑡
] = 𝑆𝑡 

 

We will discuss such conversions to martingales in this and the following chapters. 

 

B. Binomial Processes: Characteristics and Modeling 

 A Bernoulli trial is a single random experiment with two possible outcomes (e.g., 0, 1, or 
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u or d) whose outcomes depend on a probability. We will define a binomial process to be any 

stochastic process based on a series of n statistically independent Bernoulli (0,1) trials, all with 

the same outcome probability. 

 

Binomial Processes 

 Consider the following Markov Process: Xt = X0 + aZ1 + aZ2 +…+ aZt, where the 

random variable Zt() = 1 if  = u with probability p and Zt() = -1 if  = d with probability 1-p 

and a is a positive constant. We also assume that the random variables Zt are pairwise 

independent. One can view this process as a random walk starting at X0 and at each moment of 

time (t = 1,2,…) taking a step of length a to the right with probability p and taking a step of 

length a to the left with probability 1 – p. If it is the price of a security, then X0 would be its 

initial value, and at each moment of time there is a probability p that it will increase in value by a 

and a probability 1 - p that it will decrease in value by a. Under the probability measure ℙ, the 
expected value of Xt at time t is: 
 

𝐸ℙ[𝑋𝑡] = 𝐸ℙ[𝑋0 + 𝑎𝑍1 + 𝑎𝑍2 + ⋯ + 𝑎𝑍𝑡] = 𝑋0 + 𝑎𝐸ℙ[𝑍1] + 𝑎𝐸ℙ[𝑍2] + ⋯ + 𝑎𝐸ℙ[𝑍𝑡] 
 

= 𝑋0 + 𝑎(2𝑝 − 1)𝑡 
 
since for each i, 𝐸ℙ[𝑍𝑖] = 1(𝑝) + (−1)(1 − 𝑝) = 2𝑝 − 1. Thus, the expected value of Xt 
depends linearly on time. This model is the stochastic version of a deterministic model in 
which an account pays a fixed and simple interest over time (when p>1/2). If one regards 
Xs as given, and calculates the expected value 𝐸ℙ[𝑋𝑡|𝑋0, 𝑋1, … , 𝑋𝑠] for s < t, then similar to 
the calculation above: 
 

𝐸ℙ[𝑋𝑡|𝑋0, 𝑋1, … , 𝑋𝑠] = 𝑋𝑠 + 𝑎(2𝑝 − 1)(𝑡 − 𝑠). 
 
Observe that Xt is a martingale when p = ½, is a submartingale when p > ½, and is a 
supermartingale when p < ½. The process described here does not involve multiplicative 
factors or compounded returns. We will discuss multiplicative returns and compounding in 
the next subsection. 
 

Binomial Returns Process 

 The binomial process described above can be applied to security prices, with prices 

increasing or decreasing by a specified monetary amount. However, this model does not provide 

for compounding of returns over time. For example, over a period of time, one might expect that 

a security with a high price to be subject to greater monetary fluctuation than a security with a 

low price; a $500 stock will probably experience greater price fluctuation than a $2 stock. Thus, 

it may be more realistic to instead construct a binomial process to security returns, that satisfies 

the following proportional model of returns: 

 
𝑆𝑡

𝑆𝑡−1
=  (1 + 𝑎𝑍𝑡) 

 

for t = 1,2,…Thus, the security increases (upjump) by a factor 1 + a with probability p and 

decreases (downjump) by a factor 1 – a with probability 1 – p at each moment of time. This 
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implies that 

 

𝑆𝑡 = (1 + 𝑎𝑍1)(1 + 𝑎𝑍2) ⋯ (1 + 𝑎𝑍𝑡)𝑆0. 
 

 From time 0 to time t, the security could have experienced a total of k upjumps for k = 

0,1,2,…,t. The number of upjumps is a binomial process and as we reviewed in Section 2.5.1. 

The probability that exactly k upjumps occurred from time zero to time t equals: 

 

(
𝑡

𝑘
) 𝑝𝑘(1 − 𝑝)𝑡−𝑘. 

 

Since k upjumps means the Zi’s equaled one k times and equaled minus one t – k times, this 

would result in the value of St equaling (1+ a)k(1 – a)t-kS0. Thus, the expected value of St given S0 

is: 

 

𝐸ℙ[𝑆𝑡] = ∑(1 + 𝑎)𝑘(1 − 𝑎)𝑡−𝑘𝑆0 (
𝑡

𝑘
) 𝑝𝑘(1 − 𝑝)𝑡−𝑘

𝑡

𝑘=0

= 𝑆0 ∑ (
𝑡

𝑘
) [𝑝(1 + 𝑎)]𝑘[(1 − 𝑝)(1 − 𝑎)]𝑡−𝑘

𝑡

𝑘=0

. 

 

The binomial theorem states that 

 

∑ (
𝑡

𝑘
)

𝑡

𝑘=0

𝑥𝑘𝑦𝑡−𝑘 = (𝑥 + 𝑦)𝑡. 

 

Choosing x = p(1+ a) and y = (1 – p)(1- a) in the equation above, gives the following result for 

the expected value: 

 

𝐸ℙ[𝑆𝑡] = 𝑆0[𝑝(1 + 𝑎) + (1 − 𝑝)(1 − 𝑎)]𝑡 = 𝑆0[1 + 𝑎(2𝑝 − 1)]𝑡. 
 

 In this case, the expected value has an exponential dependence on time. This model is the 

stochastic version of a deterministic model of an account paying compound interest or the return 

of a securty on a compound basis. By the same argument we used to obtain 𝐸ℙ[𝑆𝑡], we can show 

 

𝐸ℙ[𝑆𝑡|𝑆0, 𝑆1, … , 𝑆𝑠] = 𝑆𝑠[1 + 𝑎(2𝑝 − 1)]𝑡−𝑠 

 

for s < t. Clearly, 1 + a(2p - 1) equals 1 when p = ½, and St is a martingale. St is a submartingale 

when p  ½, and is a supermartingale when p  ½. 

 In the model above, we assumed that the price of the security increased by the 

multiplicative factor 1+a in the event of an upjump and decreased by the multiplicative factor 1 

– a in the event of a downjump with 0 < a < 1. This model can be generalized by allowing the 

multiplicative upward factor to be u for any u > 1 and the multiplicative downward factor to be d 

for any 0 < d < 1. The symbols u and d can simply refer to an upjump or downjump; u and d can 

also refer to particular values for multiplicative jumps. As in the previous model, we assume that 
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the probability of an upjump or downjump at a particular time t is independent of the probability 

of an upjump or downjump at any other time s. Similar to the calculation earlier, the expected 

value of the security is: 

 

𝐸ℙ[𝑆𝑡] = 𝑆0[𝑝𝑢 + (1 − 𝑝)𝑑]𝑡 . 
 

Since the security price follows the same probability and pricing law in this model if we shift the 

time by any value s, then: 

 

𝐸ℙ[𝑆𝑡|𝑆𝑠] = 𝑆𝑠[𝑝𝑢 + (1 − 𝑝)𝑑]𝑡−𝑠 

 

for s < t. The process St is a martingale as long as pu + (1-p)d = 1, or p = (1 – d)/(u – d). 

 

Illustration: Binomial Outcome and Event Spaces 

 In this section, we will consider a relatively simple 2-time period time binomial process 

in order to illustrate the construction of risk-neutral pricing for a security. Table 1 depicts a 

sampling of n = 2 successive independent and identically distributed jumps, in which each 

Bernoulli trial can result in one of two potential outcomes. One such sampling might be based on 

a stock whose price can either rise or fall in each of 2 sequential transactions. As before, the 

letter u (upjump) will mean the stock increased in value at time t, and the letter d (downjump) 

will mean the stock price decreased. For example, the letters ud means that the price of the stock 

went from 10 to 15 at time 1 and then from 15 to 7.5 at time 2. Suppose that the physical 

probability (as opposed to risk neutral probability) associated with a stock price increase in each 

transaction is given to be p, implying a probability of (1-p) for a price decline in each 

transaction. Figure 1 and the listing below depict first the sample space Ω and then the filtration:  

 

Ω = {𝑢𝑢, 𝑢𝑑, 𝑑𝑢, 𝑑𝑑} 

 

ℱ0 = {, } 

 

ℱ1 = {, {uu, ud}, {du,dd}, } 

 

ℱ2 = {, {uu}, {ud}, {du}, {dd}, {uu, ud}, {uu, du}, {uu, dd}, {ud, du}, {uu, dd}, {du, dd}, 
 

{uu, ud, du}, {𝑢𝑢, 𝑢𝑑, 𝑑𝑑}, {𝑢𝑢, 𝑑𝑢, 𝑑𝑑}, {𝑢𝑑, 𝑑𝑢, 𝑑𝑑},}. 
 

Notice in Figure 1 that the process is recombining (multiple paths can lead to the same time 2 

price). 
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Pure Security   At   Time 1  Time 2  Numerical 

      Price Time Maturity Outcome Outcome    Value          _ 

Spot Prices 

 0,1;u    0     1  upjump  N/A       .6 

 0,1;d    0     1  downjump N/A       .2 

 0,2;u,u    0     2  upjump  upjump            .36 

 0,2;u,d    0     2  upjump  downjump      .12 

 0,2;d,u    0     2  downjump upjump            .12 

 0,2;d,d    0     2  downjump downjump      .04 

Forward Prices 

 1,2;u,u    1     2  upjump  upjump            .6 

 1,2;u,d    1     2  upjump  downjump      .2 

 1,2;d,u    1     2  downjump upjump            .6 

 1,2;d,d    1     2  downjump downjump      .2 

 

This table gives pure security prices at time t (second column) for instruments that pay off (mature) in T years 

(third column) contingent on the outcome in the fourth column and following the jump listed in the fifth column. 

The final column lists the pure security prices. The subscripting for 1-period spot prices (first subscript is zero) 

identifies the contract as follows: time zero (first subscript) pure security price paying 1 at time 1 (second 

subscript) contingent on up/downjump (third subscript). The subscripting for 2-period spot prices (first subscript  

is zero) identifies the contract as follows: pure security price at time 0 (first subscript) paying 1 at time 2 (second 

subscript) contingent on up/downjump at time 1(third subscript) and on up/downjump at time 2 (fourth 

subscript). The subscripting for forward prices (first subscript exceeds zero) identifies the contract as follows: 

pure security price at time 1 (first subscript) paying 1 at time 2 (second subscript) contingent on up/downjump at 

time 1(third subscript) and on up/downjump at time 2 (fourth subscript). 

Table 1: Pure Security Prices 

 

 

         

 

 

 

 

 

            

     

 

 

 

 

 

         

 

 

    Time 0          Time 1    Time 2 

 

Figure 1: Two Time Period Binomial Model - Current and Potential Stock Prices 
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 Suppose that a stock (non-dividend paying) trades in this economy, such that its current 

and expected prices are given in Figure 1. In addition, three riskless bonds trade in this economy, 

all of which have face values equal to 1. The first two bonds originate in time 0, mature in years 

1 and 2, respectively, and currently trade for .8 and .64. The third bond will originate in time 1, 

and in the absence of arbitrage opportunities, its forward contract must trade with a settlement 

price equal to .8 based on known prices of the first two bonds. 

 

Pure Security Prices 

 Next, we will discuss Arrow-Debreu (pure) security prices, one associated with each 

starting and stopping node combination in our 2-time period model (See Table 1 below). First, 

we will list spot (time 0) prices for investments extending from time 0 to time 1. Let 0,1;u be the 

time zero price of a pure security that is worth 1at time 1 if and only if an upjump occurs at time 

1. The first subscript 0 refers to the initial time 0, the second subscript 1 refers to the next time 1, 

and the third subscript u refers to the fact that there is an upjump (at time 1). Let0,1;d be the time 

zero price of a pure security that is worth 1at time 1 if and only if a downjump occurs at time 1. 

The third subscript d in this case refers to the fact that there is a downjump (at time 1). Subscripts 

before the semicolon refer to time periods, and subscripts after the semicolon refer to the 

occurrence of upjumps or downjumps. The vector [1   0]T will denote the payoff of the pure 

security identified with an upjump occurring at time 1. The vector [0   1]T will denote the payoff 

of the pure security identified with a downjump occurring at time 1. To purchase the stock at 
time 0 at a price of 10 and hold to it until time 1 means that at time 1 the portfolio of the 
owner takes the form of the vector [15   5]T because it will pay 15 if an upjump occurs and 
will pay 5 if a downjump occurs. Since an investor is willing to pay 0,1;u at time 0 for a 
payoff vector [1   0]T and pay 0,1;d at time 0 for a payoff vector [0   1]T and since the value of 
the stock portfolio [15   5]T is equal to 10 at time 0, then: 
 

(6)                              15𝜓0,1;𝑢 + 5𝜓0,1;𝑑 = [15 5] [
𝜓0,1;𝑢

𝜓0,1;𝑑
] = 10                                           

 

Also, if an investor has the riskless portfolio [1   1]T, then she is guaranteed to be paid 1 at time 

1. As this is equivalent to holding the bond that pays 1 at time 1, and since the time 0 price of the 

portfolio [1   1]T is .8, then: 

 

(7)                                             𝜓0,1;𝑢 + 𝜓0,1;𝑑 = [1 1] [
𝜓0,1;𝑢

𝜓0,1;𝑑
] = .8                                                   

 

Combining these two vector equations into one matrix equation yields: 

 

(8)                                                       [
15 5
1 1

] [
𝜓0,1;𝑢

𝜓0,1;𝑑
] = [

10
. 8

]                                                          

 

since we can invert the 22 matrix above and rewrite (8) as follows: 

 

[
0.1 −0.5

−0.1 1.5
] [

10
. 8

] = [
𝜓0,1;𝑢

𝜓0,1;𝑑
] = [

0.6
0.2

] 
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The solution is 0,1;u =.6 and 0,1;d=.2, and the results are listed in Table 1 above.  

 Before we discuss the 2-period spot prices, we also have time 1 forward prices for pure 

securities that pay off in time 2. As described in Table 1, let 1,2;u,u be the time 1 price of a pure 

security that pays 1 at time 2 if and only if upjumps occur at both times 1 and 2 (Outcome u,u). 

The remaining forward prices 1,2;u,d, 1,2;d,u, and 1,2;d,d are defined similarly. Note that two 

paths lead to a time 2 price of 7.5. The same procedure can used to calculate pure security prices 

as we did going from time 0 to 1. These forward pure security prices are calculated from the 

following and listed in Table1: 

 

(9)                                    [
22.5 7.5

1 1
] [

𝜓1,2;𝑢,𝑢

𝜓1,2;𝑢,𝑑
] = [

15
. 8

]  ;    
𝜓1,2;𝑢,𝑢   =  .6

𝜓1,2;𝑢,𝑑 =  .2
 

 

(10)                              [
7.5 2.5
1 1

] [
𝜓1,2,𝑑,𝑢

𝜓1,2;𝑑,𝑑
] = [

5
. 8

]  ;    
𝜓1,2;𝑑,𝑢 =  .6

𝜓1,2;𝑑,𝑑   =  .2
 

 

 We can calculate the 2-period pure security spot prices from the 1-period spot and 

forward prices. Again as described in Table 1, let 0,2;u,u be the time zero price of a pure security 

that pays 1at time 2 if and only if there are consecutive upjumps (denoted by the outcome u,u). 

Thus, the time zero pure security price associated with time 2 outcome u,u is 0,2;u,u. The 

remaining 2-period spot prices 0,2;u,d, 0,2;d,u, and 0,2;d,d are defined similarly. Internal pricing 

consistency (no-arbitrage pricing) requires that 0,2;u,u = 0,1;u1,2;u,u = .6  .6 = .36 and 0,2;d,d = 

0,1;d1,2;d,d= .2  .2 = .04. Also, no-arbitrage pricing requires that 0,2;u,d = 0,1;u1,2;u,d = .6  

.2 = .12 and 0,2;d,u = 0,1;d1,2;d,u= .2  .6 = .12. For the recombining part of our lattice, the pure 

security price for the set of outcomes {u,d, d,u} is 0,2;u,d + 0,2;d,u = .12+.12 = .24. These no-

arbitrage relationships are captured in the following pure security prices matrix equation and 

listed in Table 1 above: 

 

(11)                        [

  
0,2;𝑢,𝑢

(
0,2;𝑢,𝑑

  
0,2;𝑑,𝑑

+  
0,2;𝑑,𝑢

)] = [


1,2;𝑢,𝑢

0


1,2;𝑢,𝑑


1,2;𝑑.𝑢

0 
1,2;𝑑,𝑑

] [


0,1;𝑢


0,1;𝑑
] 

 

[

 
0,2;𝑢,𝑢

(
0,2;𝑢,𝑑

 
0,2;𝑑,𝑑

+  
0,2;𝑑,𝑢

)] = [
. 6 0
. 2 . 6
0 . 2

] [
. 6
. 2

] = [
. 36
. 24
. 04

] 

 

Our stock and 2-year bond can be priced from 2-year payoff vectors as follows: 

 

[
22.5 7.5 2.5

1 1 1
] [

 
0,2;𝑢,𝑢

(
0,2;𝑢,𝑑

 
0,2;𝑑,𝑑

+  
0,2;𝑑,𝑢

)] = [
𝑆0

𝐵0
] 

[
22.5 7.5 2.5

1 1 1
] [

. 36
(.12 + .12)

. 04
)] = [

10
. 64

] 
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Bond Prices 

 From these 9 pure security prices, we can obtain spot prices for 1- and 2-year zero-

coupon bonds with face value 1 along with discount functions and their associated rates as 

follows:7 

 

𝐵0,1 = 𝑑0,1 = 
0,1;𝑢

+ 
0,1;𝑑

= .8;     𝑟0,1 =
1


0,1;𝑢

+ 
0,1;𝑑

− 1 = .25 

 

𝐵0,2 = 𝑑0,2 = 
0,2;𝑢,𝑢

+ 
0,2;𝑢,𝑑

+ 
0,2;𝑑,𝑢

 + 
0,2;𝑑,𝑑

= .64 

 

𝑟0,2 = √
1


0,2;𝑢,𝑢

+ 
0,2;𝑢,𝑑

+ 
0,2;𝑑,𝑢

+ 
0,2;𝑑,𝑑

− 1 = .25 

 

We can also obtain forward bond prices, discount functions and rates contingent on realization of 

outcomes u and d, respectively, at time 1: 

 

𝐵1,2;𝑢 = 𝑑1,2;𝑢 = 
1,2;𝑢,𝑢

+ 
1,2;𝑢,𝑑

= .8 ;      𝑟1,2;𝑢 =
1


1,2;𝑢,𝑢

+ 
1,2;𝑢,𝑑

− 1 = .25 

 

𝐵1,2;𝑑 = 𝑑1,2;𝑑 = 
1,2;𝑑,𝑢

+ 
1,2;𝑑,𝑑

= .8;     𝑟1,2;𝑑 =
1


1,2;𝑑,𝑢

+ 
1,2;𝑑,𝑑

− 1 = .25 

 

Physical Probabilities, The Equivalent Martingale Measure and Change of Numeraire 

Physical Probabilities 

 Suppose that in our process, we define the physical probability of each upjump to be pu = 

.8; the physical probability of each downjump is pd = .2. For our process, we will define p0(ωt) to 

be the time-zero physical probability of a time t outcome ωt in Ω. For example, at time 0, p0(u) = 

pu =.8 and p0(d) = pd = .2. Because of independence, at time 0, p0(u, u) = pu
2 = .64, p0(u, d) + 

p0(d, u)= 2pupd = .32 and p0(d, d) = pd
2 = .04. These are all non-zero (relevant) physical 

probabilities in probability measure ℙ, and are listed in Table 2 below. However, now that we 

have set forth these physical probabilities, we will not actually have much use for them for 

valuation purposes. Again, physical probabilities, however much we might want to calculate 

them, are pretty useless here. In fact, these physical probability estimates might vary among 

individuals, might be unrelated to actual market prices and really are not enforced by any 

particular market discipline. By converting to risk-neutral probability measure ℚ, we will be able 

to conduct meaningful risk-neutral pricing of the stock, options and other securities. We will 

compute risk-neutral probabilities from pure security prices and will represent the stock as a 

martingale with respect to the risk-neutral probability measure. 

 
7 Alternatively, we might assume continuous compounding of interest such that 𝑟𝑡,𝑇 = − ln ∑

0,𝑡,𝑖
. 
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The Equivalent Martingale Measure 

 Next, we will characterize the set of risk-neutral probabilities or the equivalent 

martingale measure ℚ for this space. We obtain the time t risk-neutral probability for outcome i 

at time T by dividing the pure security price t,T;i by the time (t, T) riskless discount function dt,T:  

 
(12)           𝑞𝑡,𝑇;𝑖 = 

𝑡,𝑇;𝑖
/𝑑𝑡,𝑇 = 

𝑡,𝑇;𝑖
/B𝑡,𝑇 

 
In Chapter 3, we learned that: 
 

𝑞𝑡,𝑇;𝑖 =


𝑡,𝑇;𝑖

∑ 
𝑡,𝑇;𝑗

𝑛
𝑗=1

, 

 

but these results are equivalent since B𝑡,𝑇 = ∑ 
𝑡,𝑇;𝑗

𝑛
𝑗=1 . As you can see from equation (10), the 

risk-neutral probability is the price of the pure security associated with that time period and 

outcome in terms of the riskless bond serving as the numeraire. Thus, the numeraire is the price 

of the one-dollar face value bond maturing in the time period from t to T. These risk neutral 

probabilities are all listed in Table 2 and they can be obtained from Table 1. For example, q0,1;u= 

0,1;u /B0,1=.6/.8=.75, q1,2;u,d= 1,2;u,d /B1,2=.2/.8=.25, and q0,2;d,d= 0,2;d,d /B0,2=.04/.64=.0625.   

 Even though the risk neutral probabilities in Table 2 differ substantially from the physical 

probabilities listed above, the two sets of four probability measures are equivalent. This is simply 

because at each node on our lattice, we see that each non-zero probability in probability measure 

ℙ corresponds to a non-zero probability in probability measure ℚ. Thus, our risk-neutral 

probability measure ℚ is equivalent to our original physical probability measure ℙ. Next, we will 

demonstrate that the stock price is a martingale with respect to our risk neutral probability 

 Risk Neutral At        Physical 

 Probability Time Maturity Outcome  Probability       _ 

 q0,1;u=.75    0      1     u        .8 

 q0,1;d  =.25      0      1     d        .2 

 

 q0,2;u,u=. 5625    0      2  u,u        .64 

 q0,2;u,d =.1875    0      2  u,d        .16 

 q0,2;d,u =.1875    0      2  d,u        .16 

 q0,2;d,d  =.0625    0      2  d,d        .04 

 

 q1,2;u,u  =.75      1      2  u,u        .8 

 q1,2;u,d  =.25    1      2  u,d        .2 

 

 q1,2;d,u  =.75    1      2  d,u        .8 

 q1,2;d,d  =.25    1      2  d,d        .2 
 

This table gives risk-neutral (hedging) probabilities in the first column at time t (second column) for instruments 

that pay off (mature) in T years (third column) contingent on the outcome in the fourth column and following the 

event listed in the fifth column. The final column lists the numerical values for physical probabilities. 

Table 2: Risk Neutral Probabilities 
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measure ℚ using our alternative numeraire, the riskless bond. 

 

Change of Numeraire and Martingales 

To express the stock price as a martingale, we will change the numeraire for valuing our 

securities. Rather than express security values in terms of monetary units (e.g., dollars), we will 

express values in terms of some security, namely, the riskless bond. Notice that at time zero, the 

value of a single share of stock S0, 10, is S0/B0=10/.8=12.5 times the value of the bond, B0 = .8. 

We also point out that the bond’s value at time zero in bond units is 1 since B0/B0=1. Thus, the 

value of 1 share of stock at time zero equals that of 12.5 bonds. In addition, notice that with our 

equivalent probability measure ℚ, the time zero expected future value of the share at time 1 

given the time zero value of the share of stock is also 12.5 times that of the bond: 

 

[
15 5
1 1

] [
𝑞0,1;𝑢

𝑞0,1;𝑑
] = [

12.5
1

]  ;    
𝑞0,1;𝑢 =  .75

𝑞0,1;𝑑 =  .25
 

 

Eℚ[S0,1|S0/B0] = 15𝑞0,1;𝑢 + 5𝑞0,1;𝑑 = 12.5 = S0/B0. 

 

Since the time-zero expected value of the stock at time 1 (given the time-zero stock value in 

bond numeraire) under the probability measure ℚ equals the time-zero stock value (in bond 

numeraire), then the stock price has the martingale property at time 1. We can demonstrate 

similar martingale properties going from time 1 to time 2, and from time 0 to time 2. This will be 

explained in more detail in the next section. Thus, in this two time period process, the probability 

measure ℚ is an equivalent martingale measure to ℙ. 
 Also note that if we convert from the bond numeraire back to the original currency (such 

as dollars), we get the right values at time 0. The time-zero value of the stock is 12.5 times that 

of the bond. The bond is worth .8 dollars at time zero, therefore the stock has a time zero value 

equal to 10 dollars: 

 

S0 = 
Eℚ[S0,1]

(1+𝑟)∆𝑡=
15𝑞0,1;𝑢+5𝑞0,1;𝑑

1+.25
 = 10 

 

B0=
Eℚ[B0,1]

(1+𝑟)∆𝑡  = 
1𝑞0,1;𝑢+1𝑞0,1;𝑑

1+.25
 = .8 

 

Binomial Pricing, Change of Numeraire and Martingales 

 Here, we will prove that for an arbitrary risk-free binomial pricing model, the stock 
price St is a martingale with respect to the price of a bond (the riskless bond will be the 
numeraire). We will price the stock and bond at each time period given their potential 
subsequent cash flows. After each time period, we will verify that the stock price, when 
priced with the bond as the numeraire, satisfies the martingale property. 
 
Pricing the Stock and Bond from time 0 to time 1: 

 Let S0,1;u and S0,1;d denote the time 1 prices of the stock after an upjump and 
downjump, respectively, based on the price path from time 0. 0,1;u and 0,1;d will denote 
the prices that an investor is willing to pay at time 0 for pure securities that pay off 1 at 
time 1 if and only if the stock has an upjump (respectively downjump) to the value S0,1;u 
(respectively S0,1;d) from time 0 to time 1. Let B0,1 be the time zero price of a bond that pays 
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1 at time 1. To purchase the stock at time 0 at a price of S0 and hold to it until time 1 means 
that at time 1 the portfolio of the owner takes the form of the vector [𝑆0,1;𝑢 𝑆0,1;𝑑]𝑇 
because it will pay S0,1;u if an upjump occurs and will pay S0,1;d if a downjump occurs. Since 
an investor is willing to pay 0,1;u at time 0 for a payoff vector [1 0]𝑇and pay 0,1;d at time 
0 for a payoff vector [0 1]𝑇 , then: 
 

(13)                    𝑆0,1;𝑢𝜓0,1;𝑢 + 𝑆0,1;𝑑𝜓0,1;𝑑 = [𝑆0,1;𝑢 𝑆0,1;𝑑] [
𝜓0,1;𝑢

𝜓0,1;𝑑
] = 𝑆0.                                     

 

Also, if an investor has the riskless portfolio [1 1]𝑇 , then she is guaranteed to be paid 1 at time 

1. As this is equivalent to holding the bond that pays 1 at time 1, then the time 0 price of the 

portfolio [1 1]𝑇 is: 

 

(14)                                             𝜓0,1;𝑢 + 𝜓0,1;𝑑 = [1 1] [
𝜓0,1;𝑢

𝜓0,1;𝑑
] = 𝐵0,1.                                             

 

Combining these two vector equations into one matrix equation yields: 

 

(15)                                                   [
𝑆0,1;𝑢 𝑆0,1;𝑑

1 1
] [

𝜓0,1;𝑢

𝜓0,1;𝑑
] = [

𝑆0

𝐵0,1
].                                                    

 

Using inverse matrices, this system can be solved for ψ0,1;u and ψ0,1;d.  

 

C. Brownian Motion and Itô Processes 

 The Central Limit Theorem implies that characteristics of the binomial distribution will 

approach those of a normal distribution as the number of Bernoulli trials approach infinity. Here, 

we discuss the approach of a binomial stochastic process to a continuous normal process as the 

sizes of intervals become smaller and their number approaches infinity. Brownian motion is 

derived as a limit of a discrete random walk in the appendix to this chapter. We will focus on 

continuous time-space models, beginning with Brownian motion, which is a Markov and 

martingale process. A continuous time-space Markov process is also known as a diffusion 

process. Brownian motion processes are probably the simplest of diffusion processes. We will 

introduce the processes and certain features of them here and perform various operations on them 

in the next chapter. 

 

Brownian Motion Processes 

 One particular version of a continuous time/space random walk is a standard Brownian 

motion process Zt, also called a Wiener process. A process Zt is a standard Brownian motion 

process if: 
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Figure 3: Brownian Motion: A Fractal 

 

 

    1. Changes in Zt over time are independent over disjoint intervals of time; that is, COV(Zs-

Z, Zu-Zv,) = 0 when s >  > u > v. 

    2. Changes in Zt are normally distributed with E[Zs-Z] = 0 and E[(Zs-Z)2] = s -  for s > . 

Thus, Zs - Z ~ N(0, s-) with s > . 
    3. Zt is a continuous function of t. 

    4. The process begins at zero, Z0 = 0. 

 

 Standard Brownian motion is a martingale, since for s < t, the process satisfies the two 

conditions for our martingale definition set forth earlier. The first is: 
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𝐸[𝑍𝑡|ℱ𝑠] = 𝐸[(𝑍𝑡 − 𝑍𝑠) + 𝑍𝑠|ℱ𝑠] = 𝐸[(𝑍𝑡 − 𝑍𝑠)|ℱ𝑠] + 𝐸[𝑍𝑠|ℱ𝑠] = 𝑍𝑠. 
 

Since Zt ~ N(0, t), the following verifies our second martingale condition from Section A: 

 

𝐸[|𝑍𝑡|] =
1

√2𝜋𝑡
∫ |𝑧|𝑒−

1
2𝑡

𝑧2

∞

−∞

𝑑𝑧 =
2

√2𝜋𝑡
∫ 𝑧𝑒−

1
2𝑡

𝑧2

∞

0

𝑑𝑧 =
−2√2𝑡

√𝜋
𝑒−

1
2𝑡

𝑧2

|
0

∞

=
2√2𝑡

√𝜋
 < ∞. 

 

 A random walk consists of taking random discrete unit steps at discrete times t=0,1,2,… 

along a one-dimensional number line (axis). Brownian motion consists of continuous random 

movement along a one-dimensional number line over continuous time t ≥ 0. If we let z denote the 

possible values on the z-axis for Brownian motion Zt, then as time progresses (increases) the 

values of Zt will move up and down the z-axis in a random but continuous way. Just as a random 

walk results in a particular path for each specific history in its sample space, a specific history ω 

in the sample space Ω for Brownian motion results in a particular Brownian motion path Zt(ω). 

One can then graph Brownian motion Zt(ω) versus time t for a specific history ω. Figure 7.3 

depicts a plot of Zt() versus time t for a particular specific history  in its sample space along 

with a close-up of a short segment of the process (note the changes in axis scaling). 

 Brownian motion has a number of interesting traits. First, it is continuous everywhere and 

differentiable nowhere (it never smooths) under Newtonian calculus; the Brownian motion 

process is not smooth and does not become smooth as time intervals decrease. This is because 

along any interval of time Δt, the change in height of the Brownian motion, Zt+Δt – Zt, is on the 

order of its standard deviation, which equals √∆𝑡. Thus, (Zt+Δt – Zt)/Δt is on the order of 1/√∆𝑡, 

which approaches infinity as Δt → 0. This means that the average rate of change of Brownian 

motion over any time interval approaches infinity as the width of the time interval approaches 

zero. We see in Figure 3 that Brownian motion is a fractal, meaning that regardless of the length 

of the observation time period, the process can be defined equivalently by a simple change in the 

time scale. Graphically, this results in Brownian motion appearing similar no matter what scale 

of time one studies the graph if one is careful to scale the horizontal time scale quadratically 

faster than the vertical scale. This is because the horizontal scale is Δt = (√∆𝑡)2, which is the 

square of the vertical scale. Consider the Brownian motion process represented by the top graph 

in Figure 3. If a short segment of is cut out and magnified as in the bottom graph in Figure 3, the 

graphs look very similar to one another in that they don't smooth and the variance is proportional 

to time. Further magnifications of cutouts would continue to result in the same phenomenon. In 

addition, once a Brownian motion hits a given value, it will return to that value infinitely often. 

More generally, we will scale the variance by a multiple σ2 so that the change in the process St 

from time t to time t+∆t takes the form: 

 

),0(~)( 2 tNZZZS ttttt −== +  . 

 

 Consider the (arithmetic) Brownian motion process St of the form: St = S0 + σZt where S0 

and σ>0 are constants, and Zt is standard Brownian motion. The graph of a particular possible 

path of St versus time t is similar to the graph of standard Brownian motion. It is continuous but 

nondifferentiable (zig-zag shape). The difference is that it can start (time 0) at S0≠0 rather than at 

the origin 0. Furthermore its variance may be different (when σ2≠1) from the variance for 

standard Brownian motion. St has a normal distribution with mean S0 and variance σ2t (St ~ 
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N(S0,σ
2t)) since: 

 
𝑆𝑡 − 𝑆0

𝜎√𝑡
=

𝑍𝑡

√𝑡
= 𝑍 

 

where Z ~ N(0,1). Note that ∆St = St+Δt - St ~ N(0,σ2Δt).This Brownian motion process is said to 

have a unit variance of σ2 since when ∆t=1 the variance of St+1 - St equals σ2.  

 

Illustration: Brownian Motion  

 Suppose a stock price St follows a Brownian motion process with an initial stock value of 

$50 and a unit variance of 2 = 4. Suppose that we want to find the probability that the stock 

price is less than $56 at time 3. Since St ~ N(50,4t), then S3 ~ N(50,12). Using a standard z-Table, 

we find that this probability equals: 

 

𝑃(𝑆3 < 56) = 𝑃 (
𝑆3 − 50

√12
<

56 − 50

√12
) = 𝑃(𝑍 < 1.73) = .9582. 

 

 If one were to graph this stock price as a function of time, the shape might look similar to 

Figure 1 above until the present time. After the present time, we would not yet know the shape of 

the graph since the values of the stock are unknown. What we can say is that the graph will be 

one of an infinite number of possible choices of Brownian motion paths of the type in Figure 1. 

At any given moment of time t in either the present or future, the stock price St will change by 

unknown random amount ∆St = St+Δt - St either up or down over the time interval [t,t+∆t] so that 

this change is normally distributed with variance 4t.  

 

Brownian Motion Processes with Drift 

 In Chapter 3, we studied and solved a number of financial models based on based on 

deterministic differential equations and obtained their solutions. However, since the future is 

unknown, more realistic differential models will require terms that are probabilistic and random 

in nature. Just as dx(t) = x(t+dt)-x(t) denotes the infinitesimal change of a real valued function 

x(t) resulting from an infinitesimal change dt in time, dZt =Zt+dt – Zt will denote an infinitesimal 

change in Brownian motion Zt resulting from the time change dt. For each fixed t and dt, by 

property (2) of Brownian motion, dZt =Zt+dt – Zt ~ N(0,dt) is a random variable having a normal 

distribution with mean 0 and variance dt.  

 In order to create probabilistic models for a security St, we will generalize further on the 

Brownian motion process to allow for drift. For now, we provide a basic introduction here where 

we will now allow for drift a in the process as follows: 

 

tt bdZadtdS +=  

 

where a represents the drift tendency in the value of St, dZt is the infinitesimal change in the 

standard Brownian motion process and b is a scaling factor for standard deviation in this process. 

In a sense, b can represent the instantaneous standard deviation of returns for a stock whose 

returns follow this Wiener process. If a and b are constants, then this process is called arithmetic 

Brownian motion with drift. Because prices of many securities such as stocks tend to have a 

predictable drift component in addition to randomness, generalized Wiener processes might be 
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more practical for modeling purposes than standard Brownian motion, which only includes a 

random element.8 The generalized Wiener process expression can be applied to stock returns as 

follows: 

 

(25)                                                   
ttt dZdtSdS  +=/  

 

The drift term, µ, represents the instantaneous expected rate of return for the stock per unit of 

time and  is the instantaneous stock return standard deviation. A process St that follows 

equation (25) is called a geometric Wiener process (geometric Brownian motion), and it is the 

primary process that is used in finance to model stock prices St. We will derive the Black-

Scholes Option Pricing Model from this Wiener process shortly.  

 This geometric Wiener process can be interpreted in a stock environment as a return 

generating process. Again, the Brownian path σdZt of this process is not Newtonian 

differentiable. This means that the path does not smooth, so that we cannot draw tangent lines 

that we would otherwise associate with first derivatives.  

 

5.3.5 Itô Processes 

 An Itô process, defined as a function of one or more stochastic variables such as St and 

one or more deterministic variables such as t can be characterized similarly to the following 

function of St and t: 

 

(26)                                          
tttt dZtSbdttSadS ),(),( +=  

 

where a and b represent drift and variability terms which may change over time. Note that both 

the drift and variance terms, a and b, are functions of both St and t, and may change over time. 

We will not attempt to solve stochastic differential equations that take the form of equations (25) 

or (26) in this chapter. We merely seek to motivate the concept to more smoothly transition to in-

depth coverage in Chapters 9 and 10. 

 

D. Option Pricing: A Heuristic Derivation of Black Scholes9 

 Here, we will make our first effort at deriving the Black Scholes options pricing model, 

reasoning through a rather heuristic derivation, and follow up with more rigorous derivations in 

Chapters 9 and 10. The derivation of the price for the call option provided in this section is not 

based on the powerful techniques that will be developed in later chapters, yet it produces the 

same results. The advantage of this heuristic approach is that the derivation is easier. However, it 

does not develop the rationale underlying risk-neutral pricing aspects for options. We will make 

all standard Black-Scholes assumptions, including that that investors price options as though 

they are risk neutral. In this section, we will derive the value of a call. The expected future value 

of the call is: 

 

 
8 A Wiener Process is a continuous time-space Markov Process with normally distributed increments. A positive 

drift would be consistent with time value of money and investor risk aversion. 
9 The Black-Scholes Model will be thoroughly discussed in Chapter 10 and the essential mathematics are introduced 

here and in Chapter 9. This heuristic derivation is in the spirit of Boness [1964] and Sprenkle [1964] and as 

described by Jarrow and Rudd [1983]. 
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𝐸[𝑐𝑇] = 𝐸[𝑀𝐴𝑋[𝑆𝑇 − 𝑋), 0]] = ∫(𝑆𝑇 − 𝑋)𝑝(𝑆𝑇)𝑑𝑆𝑇

∞

𝑋

 

 

= ∫ 𝑆𝑇𝑝(𝑆𝑇)𝑑𝑆𝑇

∞

𝑋

− 𝑋 ∫ 𝑝(𝑆𝑇)𝑑𝑆𝑇

∞

𝑋

= ∫ 𝑆𝑇𝑝(𝑆𝑇)𝑑𝑆𝑇

∞

𝑋

− 𝑋𝑃(𝑆𝑇 > 𝑋) 

 

where p(ST) is the density function for the random variable ST.10 

 

Estimating Exercise Probability in a Black-Scholes Environment 

 The value of a stock option is directly related to the probability that it will be exercised. 

That is, the option value is related to the probability that expiry date stock price ST exceeds X, the 

exercise price of the option. The assumption that the stock price follows a geometric Brownian 

motion process means that the logarithmic return of a stock follows an arithmetic Brownian 

motion and is normally distributed with an upward drift �̂�𝑇 taking the following form:  

 

(27)                                                      𝑙𝑛 (
𝑆𝑇

𝑆0
) = �̂�𝑇 + 𝜎𝑍𝑇 

 

with ST having the following probability distribution: 

 

𝑆𝑇 = 𝑆0𝑒�̂�𝑇+𝜎√𝑇𝑍
 

 

where 𝑍 ∼ 𝑁(0,1).11 The drift constant �̂� is called the mean logarithmic stock return rate. In 

order to obtain the risk-neutral price of a stock option, we will show in chapter 9 that �̂� = 𝑟 −
𝜎2

2
, 

with r being the riskless return rate. We will assume this result for now. 

 To price the option, we begin by finding the probability that ST > X: 

 

(28)                      𝑃(𝑆𝑇 > 𝑋) = 𝑃(𝑆0𝑒�̂�𝑇+𝜎√𝑇𝑍 > 𝑋) = 𝑃 (�̂�𝑇 + 𝜎√𝑇𝑍 > ln (
𝑋

𝑆0
)) 

= 𝑃 (𝑍 >
ln (

𝑋
𝑆0

) − �̂�𝑇

𝜎√𝑇
) = 𝑃 (𝑍 > −

ln (
𝑆0

𝑋 ) + �̂�𝑇

𝜎√𝑇
)

= 𝑃 (𝑍 <
ln (

𝑆0

𝑋 ) + (𝑟 −
1
2 𝜎2)𝑇

𝜎√𝑇
) = 𝑁 (

ln (
𝑆0

𝑋 ) + (𝑟 −
1
2 𝜎2)𝑇

𝜎√𝑇
)

= 𝑁(𝑑2), 
 

if we define d2 to equal 
ln(

𝑆0
𝑋

)+(𝑟− 
1

2
𝜎2)𝑇

𝜎√𝑇
. Thus, ST > X whenever our normally distributed random 

variable Z is less than d2. This means that N(d2) is the probability that the option will be 

 
10 The derivation improves if we merely substitute risk neutral densities q(ST) for physical densities p(ST). 
11 Remember that our random variable Zt follows a Brownian motion process, and is, therefore, normally distributed. 
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exercised. So, look up the value for d2 on a z-table and you have the probability that the option 

will be exercised. 

 

The Expected Expiry Date Call Value 

 Next, we will focus on the term: 

 

∫ 𝑆𝑇𝑝(𝑆𝑇)𝑑𝑆𝑇

∞

𝑋

. 

 

Since 𝑆𝑇 = 𝑆0𝑒�̂�𝑇+𝜎√𝑇𝑍 and ST > X is equivalent to Z > -d2, (which is the same as Z < d2 since 

the normal curve is symmetric), it follows that: 

 

∫ 𝑆𝑇𝑝(𝑆𝑇)𝑑𝑆𝑇

∞

𝑋

= 𝑆0 ∫ 𝑒�̂�𝑇+𝜎√𝑇𝑧𝑒− 
𝑧2

2
𝑑𝑧

√2𝜋

∞

−𝑑2

=  𝑆0 ∫ 𝑒
(𝑟 − 

𝜎2

2
)𝑇+𝜎√𝑇𝑧

𝑒− 
𝑧2

2
𝑑𝑧

√2𝜋

∞

−𝑑2

 

𝑆0𝑒𝑟𝑇 ∫ 𝑒
(− 

𝜎2

2
)𝑇+𝜎√𝑇𝑧

𝑒− 
𝑧2

2
𝑑𝑧

√2𝜋

∞

−𝑑2

=  𝑆0𝑒𝑟𝑇 ∫ 𝑒− 
1
2

(−𝜎√𝑇+ 𝑧)2 𝑑𝑧

√2𝜋

∞

−𝑑2

 

 

 Next, we rewrite based on an algebraic manipulation involving "completing the 

square:"12 

 




−

−−


=
2

2

2
)(

)(
2

1

0
d

Tz
rT

T

X

TT

dz
eeSdSSpS





 

 

Make the change of variables 𝑦 = 𝑧 − 𝜎√𝑇, which yields: 

 

  ∫ 𝑆𝑇𝑝(𝑆𝑇)𝑑𝑆𝑇
∞

𝑋
= 𝑆0𝑒𝑟𝑇 ∫ 𝑒− 

1

2
𝑦2 𝑑𝑦

√2𝜋

∞

−𝑑2−𝜎√𝑇
 

= 𝑆0𝑒𝑟𝑇 ∫ 𝑒−
1
2

𝑦2 𝑑𝑦

√2𝜋

𝑑2+𝜎√𝑇

−∞

= 𝑆0𝑒𝑟𝑇𝑁(𝑑1) 

 

where we define d1 = d2 + σ√𝑇. Thus, the expected expiry date call value equals: 

 

𝐸[𝑐𝑇] = ∫ 𝑆𝑇𝑝(𝑆𝑇)𝑑𝑆𝑇

∞

𝑋

− 𝑋𝑃(𝑆𝑇 > 𝑋) = 𝑆0𝑒𝑟𝑇𝑁(𝑑1) − 𝑋𝑁(𝑑2) . 

 

Now discount this expected future value to obtain the Black-Scholes Options Pricing Model: 

 
12 If we focus on the exponents of the equations above and below, with a little algebra, we can verify that �̂�𝑇 +

𝜎√𝑇𝑧 −
𝑧2

2
= (�̂� +

𝜎2

2
) 𝑇 −

(𝑧−𝜎√𝑇)
2

2
= 𝑟𝑇 −

(𝑧−𝜎√𝑇)
2

2
. See Exercise 10 at the end of the chapter. 
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(29)    ( ) ( )2100 dN
e

X
dNSc

rT
−=  

 

Observations Concerning N(d1), N(d2) and c0 

 With some minor manipulation, the Black-Scholes options pricing model provides 

several useful interpretations concerning call value: 

 

1. The probability that the stock price at time T will exceed the exercise price X of the call is 

P[ST > X] = N(d2).  

2. The expected value of the stock conditional on the stock's price ST exceeding the exercise 

price of the call is: 

 

𝐸[𝑆𝑇|𝑆𝑇 > 𝑋] =
∫ 𝑆𝑇𝑝(𝑆𝑇)𝑑𝑆𝑇

∞

𝑋

∫ 𝑝(𝑆𝑇)𝑑𝑆𝑇
∞

𝑋

=
𝑆0𝑒𝑟𝑇𝑁(𝑑1)

𝑁(𝑑2)
 

 

3. The expected expiry date call value is simply the product of the probability of call 

exercise and the expected value of the stock conditional on the stock's price exceeding the 

exercise price of the call, minus the expected exercise value paid at time T: 

 

𝐸[𝑐𝑇] =  XSSE TT   XSP T  − 𝑋𝑃(𝑆𝑇 > 𝑋)

=
𝑆0𝑒𝑟𝑇𝑁(𝑑1)

𝑁(𝑑2)
𝑁(𝑑2) − 𝑋𝑁(𝑑2) = 𝑆0𝑒𝑟𝑇𝑁(𝑑1) − 𝑋𝑁(𝑑2). 

 

4. The present value of the call is simply the discounted value of its expected future value: 

 

𝑐0 = 𝐸[𝑐𝑇]𝑒−𝑟𝑇 = 𝑒−𝑟𝑇[𝑆0𝑒𝑟𝑇𝑁(𝑑1) − 𝑋𝑁(𝑑2)] = 𝑆0𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2). 
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Exercises 

 

1.  Suppose that a particular swap contract is currently valued at 0 and that the probability equals 

p that the price of the contract will increase by 1 at times 1 and 2. The probability that the price 

of the contract will decrease by 1 equals 1-p at times 1 and 2. Assume that the event that the 

price increases or decreases at time 1 is independent of the event that the price increases or 

decreases at time 2. No numerical calculations are needed for this example. 

a. What are all of the possible distinct price 2-period change outcomes for the contract 

through time 2? For example, let the notation (1,-1) mean that the contract’s price will 

have increased by 1 at time 1 and decreased by 1 at time 2.  

b. The sample space for this process is  = {(1,1), (1,-1), (-1,1), (-1,-1)}. 

c. What are the potential time zero events? What are the probabilities associated with each of 

the potential time zero events? 

d. What is 𝑃(𝑋1 = 1)? 

e.  What is 𝑃({(1,1), (1, −1)})? 

f. Is the following statement true: 𝑃(𝑋1 = −1) = 𝑃({(−1,1), (−1, −1)}) = 1 − 𝑝? 

g. Is the following statement true: 𝑃(𝑋1 = 1 𝑜𝑟 𝑋1 = −1) = 𝑃() = 0? 

h. What is 𝑃(𝑋2 = 0 𝑜𝑟 𝑋2 = 2) = 𝑃({(1,1), (1, −1), (−1,1)}) = 2𝑝(1 − 𝑝) + 𝑝2 =
𝑝(2 − 𝑝). 

i. What is 𝑃(𝑋1 = 1 𝑎𝑛𝑑  𝑋2 = 0)? 

 

2.  Suppose that a brokerage firm uses an algorithm so that the number of portfolios that it 

assigns to any given broker satisfies the following model. Let Xt denote the number of portfolios 

that it assigns a broker on day t. Assume that the firm will assign either 1, 2, or 3 portfolios per 

day to a broker. At time t = 1 the random variable X1 has probabilities equal to1/3 of taking on 

the values of 1, 2 or 3. For all subsequent times t = 2, 3, 4, …, the variable Xt satisfies the 

following conditions. If Xt-1=1, then P(Xt = 2) = ½ and P(Xt = 3) = ½. If Xt-1 = 2, then P(Xt = 1) = 

½ and P(Xt = 3) = ½. If Xt-1=3, then P(Xt = 1) = ½ and P(Xt = 2) = ½. 

     a.  Is the process Xt stochastic? 

     b.  Is the process Xt a Markov process? 

     c.  Are the increments Zt = Xt – Xt-1 independent over time starting with t = 2? 

 

3.  Cards are dealt one at a time from a standard 52-card randomly shuffled deck and points are 

awarded to the lone recipient based on the number on the card (2 to 10) or 11 if the dealt card is a 

"face card" or Ace. Let St represent the number of points to be held by the recipient after t cards 

have been dealt by the dealer. For parts a through c, suppose that the cards have been dealt 

without replacement. For parts d,e, f and g, assume that the cards have been dealt with 

replacement and that 1 point is awarded if the number on the card is a 2 through a 6, 0 points are 

awarded if the number on the card is 7, 8, or 9, and -1 point is awarded if the card is a ten, a face 

card, or an ace. We point out that this is the most common point systems used by card counters 

playing blackjack. Note that we are assuming a finite process since the “time” remains finite,  

running from 0 to 52.     

   a. Is this process stochastic? 

   b. Is this process Markov? 

   c. Is this process a submartingale? 

   d. Is this process Markov? 
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   e. Is this process a submartingale? 

   f. Is this process Markov? 

   g.      Is this process a martingale?        

 

4.a.  Consider two probabilities ℙ and ℚ defined on the sample space Ω={ω1,ω2, ω3} in the 

following way: p(ω1)=0, p(ω2)=.4, p(ω3)=.6, and q(ω1)=.4, q(ω2)=0, q(ω3)=.6. Are ℙ and ℚ 

equivalent probability measures? 

   b.  Now, we change our exercise prices. Suppose that, instead, p(ω1)=0, p(ω2)=.4, p(ω3)=.6, 

and q(ω1)=0, q(ω2)=.3, q(ω3)=.7. Are ℙ and ℚ equivalent probability measures now? 

 

5.  Suppose that a particular stock will experience n = 4 consecutive transactions over a given 

period and that we wish to know the probability that the stock price will have increased in 

exactly y* of those four transactions. Assume that the transactions follow a binomial process. 

   a.  What is the number of potential orderings of price increases (+) and decreases (-) in these 

stock prices over the 4 transactions? 

   b.  List all potential orderings of the directional changes of the stock price (+) or (-). 

   c.  Suppose that each transaction is equally likely to result in a price increase or decrease, then 

each trial has an equal probability of an upjump or downjump (p = ½). What is the probability 

that any one of the potential orderings listed in part c will be realized? 

   d.  Suppose that the probability of a price increase in any given transaction equals p = .6. What 

is the probability of realizing three price increases followed by a single decrease? 

   e.  What is the probability that exactly y*=3 price increases will result from n = 4 transactions 

where p = .6? 

   f.  What is the probability that more than 3 price increases will result from n = 4 transactions 

where p = .6? 

 

6. Examination of trade-by-trade data for a given stock reveals that the stock has a 51% 

probability of increasing by $.0625 on any given transaction and a 49% probability of 

decreasing by $.0625 on any given transaction. The stock has a current market value equal 

to $100 and is expected to trade ten times per day starting today. 

   a.  What is the probability that the stock's price will exceed $99.99 at the end of today? 

   b.  What is the probability that the stock's price will exceed $100.49 at the end of today? 

   c.  What is the probability that the stock's price will exceed $110 at the end of 10 days? 

 

7.  Consider a Markov process St that produces one of two potential outcomes at each time t = 

nΔt for n = 0, 1, 2, ... For example, suppose a stock price can increase (uptick) by a√𝛥𝑡 (a>0) 

with physical probability p or decrease (downtick) by a√𝛥𝑡 with physical probability(1-p). This 

process applies to each time period t ≥ Δt. Assume that each uptick or downtick at a particular 

time is independent of the uptick or downtick at any other time, and so St follows a binomial 

process.  

    a. Write a function that provides the expected value of St+Δt at time t + Δt given St. 

    b.  Under what circumstances is this Markov Process also a Martingale? 

    c.  Derive a formula to obtain the variance of the process St+Δt -St. 

    d.  Simply your formula in parts a and c for p = .5. 

    e.  What is the standard deviation of this process? 
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8.  Kestrel Company stock is currently selling for $40 per share. Its historical standard deviation 

of returns is .5; this historical standard deviation will be used as a forecast for its standard 

deviation of returns. Assume that the logarithmic return on the stock follows a Brownian motion 

with drift process. The one-year Treasury Bill rate is currently 5%. What is the probability that 

the value of the stock will be less than $30 in one year? 

 

9.  Verify that the following two expressions to define d2 are identical. That is, verify that d2 = d1 

- σ√𝑇: 

ln (
𝑆0

𝑋 ) + (𝑟 −
1
2 𝜎2)𝑇

𝜎√𝑇
=

ln (
𝑆0

𝑋 ) + (𝑟 +
1
2 𝜎2)𝑇

𝜎√𝑇
− 𝜎√𝑇 

This exercise requires only basic algebra, and is useful because both versions of this d2 

expression appear in the literature and some more advanced derivations are more convenient 

when starting with one rather than the other. 

 

10. Verify Footnote 12 for Section D, which states the following: 

�̂�𝑇 + 𝜎√𝑇𝑧 −
𝑧2

2
= (�̂� +

𝜎2

2
) 𝑇 −

(𝑧−𝜎√𝑇)2

2
. 

11. Let   ( )


=
X

TTT dSSpXSP equal the probability that a given call will be exercised at 

expiry, time T, where ST is the expiry date random stock price and X is the exercise price of the 

option. Do not assume that the Black-Scholes assumptions are necessarily true (avoid use of 

N(d1) and N(d2). 

    a.  Write a function that gives the expected expiry date value of the stock conditional on its 

value exceeding X. 

    b.  Write a function that gives the expected expiry date value of the call conditional on its 

underlying stock value exceeding X. 

    c.  Based on your answers to parts a and b, write a function that gives the expected expiry date 

value of the call. 

 

12.  A gap option has two exercise prices, one (X) that triggers the option exercise and the 

second (M) that represents the price or cash flow that exchanges hands at exercise. For example, 

a gap call with exercise prices X = 50 and M = 40 enables its owner to purchase its underlying 

stock for 40 when its price rises above 50. The European version of this option can be exercised 

only when the underlying stock price exceeds 50 at expiration, but at a price of M = 40. Assume 

that the underlying stock price follows the following process:  
 zTT

T eSS  += 0  

 The current stock price is S0 = 45, the variance of underlying stock returns equals σ2 = .16, the 

riskless return rate equals r = .05.  

a. What is the probability that the underlying stock will be worth more than 50 in one year? 

b. What is the expected value of this stock contingent on its price exceeding 50? 

c. The owner of the gap option has the right to pay 40 for the underlying stock if its price rises 

above 50. What is the expected value of this call contingent on its exercise? 

d. What is the current value of this gap call? 
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Solutions 

 

1.a.  All of the possible distinct price 2-period change outcomes for the stock to time 2 are (1,1), 

(1.-1), (-1,1), and (-1,-1).   

   b.  The sample space for this process is  = {(1,1), (1,-1), (-1,1), (-1,-1)}. 

  c.  The time zero events are Ω and ∅. 𝑃(𝑋0 = 0) = 𝑃(𝛺) = 1 and 𝑃(𝑋0 ≠ 0) = 𝑃(∅) = 0. 
   d.  p 

  e.  𝑃({(1,1), (1, −1)}) = p 

   f. Yes 

  g.  No. 𝑃(𝑋1 = 1 𝑜𝑟 𝑋1 = −1) = 𝑃(𝛺) = 1 

  h.   𝑃(𝑋2 = 0 𝑜𝑟 𝑋2 = 2) = 𝑃({(1,1), (1, −1), (−1,1)}) = 2𝑝(1 − 𝑝) + 𝑝2 = 𝑝(2 − 𝑝). 
   i.  Since the σ-algebra ℱ1 is defined such that ℱ1  ℱ2, this allows us to compute probabilities 

that involve random variables at different times such as: 𝑃(𝑋1 = 1 𝑎𝑛𝑑  𝑋2 = 0) =
𝑃({(1,1), (1, −1)} ∩ {(1, −1), (−1,1)}) = 𝑃({(1, −1)}) = 𝑝(1 − 𝑝). 
 

2.a.  This is a stochastic process. 

   b.  Clearly this stochastic process is a discrete Markov Process, since the probability that Xt 

will take a particular value depends only on its current value Xt-1. 

   c.  No. First, we will show that P(Xt =i)=1/3  for i = 1, 2, 3, and t =2, 3, … . To find P(X2 =1), 

we calculate that 

 

𝑃(𝑋2 = 1) = 𝑃(𝑋2 = 1|𝑋1 = 1)𝑃(𝑋1 = 1) + 𝑃(𝑋2 = 1|𝑋1 = 2)𝑃(𝑋1 = 2)

+ 𝑃(𝑋2 = 1|𝑋1 = 3)𝑃(𝑋1 = 3) = 0 ×
1

3
+

1

2
×

1

3
+

1

2
×

1

3
=

1

3
. 

 

One can derive in a similar manner that P(X2 =2)=1/3 and P(X2 =3)=1/3. Using the same type of 

calculations as above, it follows by mathematical induction that P(Xt =i)=1/3  for i = 1, 2, 3, and 

any t ≥ 2. Suppose that Zt = Xt - Xt-1 for t = 2, 3, 4,… . For all t > 1, P(Zt = 1) = 1/3×½ + 1/3×½ + 

1/3×0 = 1/3. Note that this is an unconditional probability. Next, we find P(Zt-1=1,Zt=1). If Zt=1, 

then either Xt-1 =1 or Xt-1 =2. But if we also have Zt-1=1, then we must have Xt-2 = 1. Thus, P(Zt-

1=1,Zt=1)=P(Xt-2=1,Xt-1=2,Xt =3)=P(Xt=3|Xt-2=1,Xt-1=1)P(Xt-2=1,Xt-1=1)= P(Xt=3|Xt-2=1,Xt-

1=1)P(Xt-1=2|Xt-2=1)P(Xt-2=1)=1/2×1/2×1/3=1/12. This means that P(Zt-

1=1,Zt=1)=1/12≠1/9=1/3×1/3= P(Zt-1=1)P(Zt=1). This proves that the increments are not 

independent. 

 

3.a.  Yes: For every fixed number of cards t that have been dealt, the sum St of the values of the t  

dealt cards is a random variable. Furthermore, this random variable is indexed by time 

(technically, by the number of cards that have been dealt). The common probability space is the 

probability space that arises from the set of outcomes of all possible ways to deal 52 cards from 

the deck. 

b.  No: It is enough to show the following one case: P(S3=9|S0=0,S1=2,S2=6)≠P(S3=9|S2=6)  to 

justify that the Markov property is violated. Note that Zt =St – St-1 denotes the value of the t-th 

card that is dealt. Thus, P(S3=9|S0=0,S1=2,S2=6)= P(Z3=3|Z1=2,Z2=4) and P(S3=9|S2=6)= 

P(Z3=3|Z1+Z2=6). We calculate that: 
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𝑃(𝑍3 = 3|𝑍1 = 2, 𝑍2 = 4) =
𝑃(𝑍1=2,𝑍2=4,𝑍3=4)

𝑃(𝑍1=2,𝑍2=4)
=

4×4×4

52×51×50
4×4

52×51

=
2

25
.       

 

In order that Z1+Z2 =6, either Z1=2 and Z2 =4, or Z1=4 and Z2 =2, or Z1=3 and Z2 =3. Thus: 

 

𝑃(𝑍3 = 3|𝑍1 + 𝑍2 = 6) =
𝑃(𝑍1 + 𝑍2 = 6, 𝑍3 = 3)

𝑃(𝑍1 + 𝑍2 = 6)
 

 

=
𝑃(𝑍1 = 2, 𝑍2 = 4, 𝑍3 = 3) + 𝑃(𝑍1 = 4, 𝑍2 = 2, 𝑍3 = 3) + 𝑃(𝑍1 = 3, 𝑍2 = 3, 𝑍3 = 3)

𝑃(𝑍1 = 2, 𝑍2 = 4) + 𝑃(𝑍1 = 4, 𝑍2 = 2) + 𝑃(𝑍1 = 3, 𝑍2 = 3)
 

 

=

4 × 4 × 4
52 × 51 × 50

+
4 × 4 × 4

52 × 51 × 50
+

4 × 3 × 2
52 × 51 × 50

4 × 4
52 × 51

+
4 × 4

52 × 51
+

4 × 3
52 × 51

=
19

275
≠

2

25
. 

 

c.  Yes: Since E[St|St-1]=St-1+E[St-St-1|St-1] and St-St-1>0, then E[St|St-1]>St-1.  

d.  Yes: Since the cards are dealt with replacement, then each card is dealt from the originally 

randomly shuffled deck. This implies that the choice of each card dealt is independent of the 

choice of the any other card that is dealt. Thus, the random variables {Zt} are independent of one 

another. As we proved in section 5.1.2, the resulting process is Markov. 

e.  Yes: By the same reason as in part c.    

f.  Yes: By the same reason as in part d. 

g.  Yes: First, we write E[St|St-1]=St-1+E[St-St-1|St-1]. Note that since Zt =St – St-1, S0=0, and St-

1=Z1+…+Zt-1, then the random variable St – St-1 is independent of the random variable St-1. This 

implies that E[St-St-1|St-1]= E[St-St-1]=E[Zt]. As the t-th card is being dealt, the probability is 

1/52 of it being any given card in the deck. There are 4×5=20 cards that have a point value of 1. 

There are 4×3=12 cards that have a point value of 0. There are 4×5=20 cards that have a point 

value of -1. Thus: 

𝐸[𝑍𝑡] = 1 ×
20

52
+ 0 ×

12

52
+ (−1) ×

20

52
= 0. 

This means that E[St|St-1]=St-1+E[St-St-1|St-1]=St-1. We conclude that St is a martingale.  

 

4.a.  No: p(ω1)=0 while q(ω1)=.4≠0.  

   b.  Yes: p(ωi)≠0 if and only if q(ωi)≠0. 

  

5.5.a.  24 = 16 

   b.      + + + +           - + + +   - + + -  - + -  - 

            + + + -            + + - -  - + -  +  -  - + - 

            + + -  +           + - + -     - - +  +  -  -  - + 

            + - ++            + -  - +  + - -  -  -  -  -  - 

   c.  Since each transaction is equally likely to result in a price increase or decrease, then each 

ordering has equal probability (p = ½). The probability that any particular ordering will be 

realized is 𝑃[𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔] =  𝑝𝑛=1/24 = .0625. 

   d.  The probability of three price increases followed by a single decrease (+++-) equals .0864: 

𝑃[+, +, +, −] = 𝑃[𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔] =  𝑝𝑦∗(1 − 𝑝)𝑛−𝑦∗ =  𝑝3(1 − 𝑝)4−3 =  .0864 
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   e.  The probability that exactly y*=3 price increases will result from n = 4 transactions where p 

= .6 is calculated from the following: 

𝑃(𝑦 ∗) =  (
𝑛

𝑦 ∗) 𝑝𝑦∗(1 − 𝑝)𝑛−𝑦∗ 

𝑃(3) =  (
4
3

) . 63(1 −. 6)4−3 =  
4 ∙ 3 ∙ 2 ∙ 1

3 ∙ 2 ∙ 1 ∙ 1
∙ .216 ∙ .4 = 4 ∙ .0864 = .3456 

 

   f.  𝑃[𝑦 ∗> 3] = 𝑃[𝑦 ∗= 4] =. 64 = .1296. 
  

6.a. At least 5 increases are necessary for the price at the end of the day to exceed $99.99. The 

probability of this occurring is computed as follows: 

𝑃[𝑋 > 99.99] =  (
10
5

) . 515. 495 + (
10
6

) . 516. 494 + (
10
7

) . 517. 493 + (
10
8

) . 518. 492

+ (
10
9

) . 519. 491 + (
10
10

) . 5110. 490

= 0.2456 + 0.2130 + 0.1267 + 0.0494 + 0.0114 + 0.0012  
= .6474 

   b. At least 9 increases (.50÷.0625 = 8, plus one more gain to offset one loss out of 10) are 

necessary for the price at the end of the day to be at least $100.50. The 

probability of this occurring is computed as follows: 

𝑃[𝑋 > 100.49] =  (
10
9

) . 519. 491 + (
10
10

) . 5110. 490 = 0.0114 + 0.0012  

= .0126 
   c. zero: the stock would require 160 more upjumps than downjumps in price to increase by 

10 points, yet it only has 100 opportunities to upjump. 

 

7.a.  Under physical probability measure ℙ, the expected value of St+Δt at time t + Δt given St is 

𝐸ℙ[𝑆𝑡+𝑡|𝑆𝑡] =  𝑝(𝑆𝑡 + 𝑎√𝑡) + (1 − 𝑝)(𝑆𝑡 − 𝑎√𝑡) = 𝑆𝑡 + (2𝑝 − 1)(𝑎√𝑡) 

    b.  This Markov Process is also a Martingale in the case where p = 1/2. 

    c.  Since the variances of St+Δt and St+Δt -St are equal if St is given, the variance of St+Δt at time t 

+Δt given St is: 

𝑉𝑎𝑟ℙ[𝑆𝑡+𝑡 − 𝑆𝑡|𝑆𝑡] = 𝐸ℙ[(𝑆𝑡+∆𝑡 − 𝑆𝑡)2] − (𝐸ℙ[𝑆𝑡+∆𝑡 − 𝑆𝑡])2 

= 𝑝(𝑎√𝑡)
2

+ (1 − 𝑝)(−𝑎√𝑡)
2

− [𝑝(𝑎√𝑡) + (1 − 𝑝)(−𝑎√𝑡)]
2
 

= 𝑝(𝑎√𝑡)
2

+ (1 − 𝑝)(−𝑎√𝑡)
2

− 𝑝2(𝑎2𝑡) + (1 − 𝑝)2(𝑎2𝑡) + 2𝑝(1 − 𝑝)𝑎2𝑡 

= 2𝑝𝑎2𝑡−4𝑝2 
𝑎2𝑡 − 𝑝2(𝑎2𝑡) + 𝑎2𝑡 + 𝑝2𝑎2𝑡−2𝑝2 

𝑎2𝑡 + 2𝑝𝑎2𝑡−2𝑝2 
𝑎2𝑡 

= 2𝑝𝑎2𝑡−4𝑝2 
𝑎2𝑡 + 2𝑝𝑎2𝑡 =  4𝑝𝑎2𝑡−4𝑝2 

𝑎2𝑡 

= 4𝑝(1 − 𝑝)𝑎2𝛥𝑡. 
    d.  If p = .5, the expected value and variance of St+Δt given St are St and a2Δt, respectively.  

    e.  The standard deviation of St+Δt given St equals a√𝛥𝑡.  

 

8.   We are going to make use of equation (28) with S0 =40, X =30, σ = .5, r = .05, and T=1. We 

first need to find: 

𝑑2 =
𝑙𝑛 (

40
30) + (.05 −

1
2 . 52) × 1

. 5 × √1
= .4254. 

Using equation (28) we obtain: 
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𝑃(𝑆𝑇 < 30) = 1 − 𝑃(𝑆𝑇 ≥ 30) = 1 − 𝑁(. 4254) = 1 − .6647 = .3353. 
 

9. We will start by simply dropping identical terms on both sides to focus on the differences 

between these two expressions: 

(𝑟 −
1
2 𝜎2)𝑇

𝜎√𝑇
=

(𝑟 +
1
2 𝜎2)𝑇

𝜎√𝑇
− 𝜎√𝑇 

We drop r from both sides and finish by noting that: 

−
1

2
𝜎2𝑇

𝜎√𝑇
=

1

2
𝜎2𝑇

𝜎√𝑇
− 𝜎√𝑇  because  −

1

2
𝜎2𝑇

𝜎√𝑇
=

1

2
𝜎2𝑇

𝜎√𝑇
−

𝜎2𝑇

𝜎√𝑇
 

 

10.  Minor simplification and expanding the square yields: 

�̂�𝑇 + 𝜎√𝑇𝑧 −
𝑧2

2
= (�̂� +

𝜎2

2
) 𝑇 −

(𝑧 − 𝜎√𝑇)2

2
 

�̂�𝑇 + 𝜎√𝑇𝑧 −
𝑧2

2
= �̂�𝑇 +

𝜎2

2
𝑇 −

𝑧2

2
+ 2

𝜎√𝑇𝑧  

2
−

𝜎2

2
𝑇 

𝜎√𝑇𝑧 =
𝜎2

2
𝑇 + 2

𝜎√𝑇𝑧  

2
−

𝜎2

2
𝑇 

𝜎√𝑇𝑧 = +𝜎√𝑇𝑧 

 

11.a.  From Bayes Rule, the expected expiry date value of the stock conditional on its value 

exceeding X is: 𝐸[𝑆𝑇|𝑆𝑇 > 𝑋] =  
∫ 𝑆𝑇𝑝[𝑆𝑇]𝑑𝑆𝑇

∞
𝑋

∫ 𝑝[𝑆𝑇]𝑑𝑆𝑇
∞

𝑋

. 

    b. The expected expiry date value of the call given that it is exercised is given by: 

 
( ) ( )

( ) TT
X

TT
X

T

TT

dSSp

dSSpXS
XScE








−
=  

    c.   Thus, expected expiry date value of the call is simply the product of the last equations and 

the probability that the stock's day T value exceeds X: 

 
( ) ( )

( )
( ) ( ) ( ) TT

X
T

X
TT

TT
X

TT
X

T

T dSSpXSdSSp
dSSp

dSSpXS
cE 



 





−=
−

=  

 

12.a. The probability of option exercise 
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