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Chapter 8: Binomial Option Pricing 
 
A. Binomial Option Pricing: One-Period Case 
 The Binomial Option Pricing Model is based on the assumption that the underlying stock 
price is a Bernoulli trial in each period, such that it follows a binomial multiplicative return 
generating process. This means that for any period following a particular outcome, the stock's 
value will be only one of two potential constant values. For example, the stock's value at time 
t+1 will be either u (multiplicative upward movement) times its prior value St or d (multiplicative 
downward movement) times its prior value St. 
 Notice that we have not specified probabilities of a stock price increase or decrease 
during the period prior to option expiration. Nor have we specified a discount rate for the option 
or made inferences regarding investor risk preferences. We will value this call based on the fact 
that during this single time period, we can construct a riskless hedge portfolio consisting of a 
position in a single call and offsetting positions in α shares of stock. This means that by 
purchasing a single call and by selling α shares of stock, we can create a portfolio whose value is 
the same regardless of whether the underlying stock price increases or decreases. The ratio of the 
number of shares to offset each call in the portfolio is called the hedge ratio, or in the multi-
period framework, the dynamic hedge. Let us first define the following terms: 
 
 X = Exercise price of the stock 
 S0 = Initial stock value 
 u = Multiplicative upward stock price movement 
 d = Multiplicative downward stock price movement 
 cu = MAX[0,uS0 - X]; Value of call if stock price increases 
 cd = MAX[0,dS0 - X]; Value of call if stock price decreases 
 α = Hedge ratio 
 r = Riskless return rate 
 
The Hedge Ratio 
 In a one-time binomial framework where there exists a riskless asset, we can hedge the 
call against the stock such the resultant portfolio with one call and  shares of stock will produce 
the same cash flow whether the stock increases or decreases: 
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This one-time period hedge implies a hedge ratio , which provides for the number of shares per 
call option position to maintain the perfect hedge (portfolio that replicates the bond): 
 

(2)      
)(0 udS

cc du




  

 
Negative values for , the hedge ratio, which will always be the case when the call is purchased, 
imply that  shares of stock are shorted for each call that is purchased. 
 Multi-period models lead to 2T potential outcomes without recombining, or, in many 
instances, T+1 potential outcomes with recombining. Thus, complete capital markets require a 



2 
 

set of 2T or T priced securities (stocks or options) with payoff vectors in the same payoff space 
such that the set of payoff vectors is independent. In multiple period frameworks, hedging with 
many securities guarantees hedged portfolios at the portfolio termination or liquidation dates. In 
a binomial framework, there is an important exception. If the hedge t can be updated each 
period t, we write the hedge ratio for period t as follows: 
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The dynamic hedge is updated each period. Any portfolio employing and updating this dynamic 
hedge in each period in a binomial framework will be riskless at each period. 
 
Pricing the Call in the One-Period Case 
 Since the risk of a call can be hedged with an offsetting position in a call, we can perform 
a little algebra on Equation (1) to value the call in Equation (3) as follows: 
 
(1)     𝑐ௗ+𝛼𝑑𝑆଴ 

= (𝑐଴ + 𝛼𝑆଴)(1 + 𝑟) 
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Equation (3) is the binomial model for one-period pricing for the call. We can add some insight 
to this by filling in the hedge ratio from Equation 2 as follows, then rearrange terms to simplify 
and to separate cu and cd as follows in Equation (4): 
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 Equation (4) has a very nice feature: c0 can be expressed as the discounted expected 
future value of the call, which equals the upjump value of the call multiplied by some function of 
r, u and d plus the downjump value of the call multiplied by another function of r, u and d. These 
two functions can be interpreted as risk-neutral probabilities, one for upjump and the second for 
downjump, which is what we will do in the next subsection. 
 
Risk-Neutral Setting: One-Period Case 
 Here, we will calculate the risk-neutral probabilities. In earlier chapters, we valued a call 
as a payoff structure identical to a portfolio comprised of underlying shares and bonds. This is 
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what we did above in Equation (3) with the hedge ratio. We use a similar method here, where the 
equivalent martingale measure is calculated from bond and stock payoffs, and the call is valued 
based on those risk-neutral probabilities.1 Valuing the one-time period call in order to obtain its 
risk-neutral pricing in a single time period binomial framework is straightforward given the risk-
neutral probability measure ℚ, where q represents the risk-neutral probability (from the 
equivalent martingale ℚ) of an upjump: 
 

Eℚ[c1] = [𝑐௨𝑞 + 𝑐ௗ(1 − 𝑞 )] = 𝑐଴(1 + 𝑟). 
 

Now, we have a simple expected value model for estimating the expected future value of the call. 
Solving for c0 gives the price: 

 

c0 = 
௖ೠ௤ ା௖೏(ଵି௤ )
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Now, we have the present value of the call. We value shares of the stock relative to the bond as 
follows: 
 

Eℚ[Sଵ]  =  𝑢𝑆଴𝑞 + 𝑑𝑆଴(1 − 𝑞 ) = 𝑆଴(1 + 𝑟), 
 
which implies that: 
 

𝑞 =
1 + 𝑟 − 𝑑

𝑢 − 𝑑
 

 
 Part of what makes this model so useful is that we do not need to know investor risk-
return preferences, the expected return for the stock or even the physical probabilities for 
upjumps and downjumps. This last point is worth emphasizing: We do not need to know physical 
probabilities. Instead, we can calculate risk neutral probabilities for upjumps q and downjumps 
(1-q) based on the equivalent martingale. Now, we see that we can price the call in a one-period 
environment with either of the following: 
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Illustration: Binomial Option Pricing - One Period Case 
 Consider a stock currently selling for 10 and assume for this stock that u equals 1.5 and d 
equals .5. The stock's value in the forthcoming period will be either 15 (if outcome u is realized) 
or 5 (if outcome d is realized). Consider a one-period European call trading on this particular 
stock with an exercise price of 9. If the stock price were to increase to 15, the call would be 
worth 6 (cu = 6); if the stock price were to decrease to 5, the value of the call would be zero (cd = 
0). In addition, recall that the current riskless one-year return rate is .25. Based on this 
information, we should be able to determine the value of the call. 

 
1 Recall that in a complete market with physical probability measure ℙ, probability measure ℚ is said to be an 
equivalent martingale measure to ℙ if both are equivalent probability measures, and every discounted security in the 
market is a martingale with respect to ℚ. Recall that a stochastic process whose increments have expected value 0, 
also known as a “random walk.” 
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 In our numerical example offered above, we use the following to determine the value of 
the call in the binomial framework: 
 
   S0 = 10   u = 1.5  d = .5 
   cu = 6   cd = 0  r = .25 
   X = 9 
 
 The risk-neutral probability of an upjump, the hedge ratio and the time zero value of the 
call in the one-period framework are calculated as follows: 
 

𝑞 =
1 + 𝑟 − 𝑑

𝑢 − 𝑑
=

1 + .25 − .5

1.5 − .5
= .75 
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c0 = 
௖ೠ௤ ା௖೏(ଵି௤ )

ଵା௥
=  

଺.଻ହ ା ଴ (ଵି.଻ହ)

ଵା.ଶହ
=  3.6 

 
Recall that the time zero value of the bond was .8. The time zero value of the call is 3.6/.8 = 4.5 
times that of the bond; the time zero expected value of the call at time 1 is also 4.5 times the 
value of the time one bond value: 
 

Eℚ[c1] = [𝑐௨𝑞 + 𝑐ௗ(1 − 𝑞)] =  6. 75 +  0(1 − .75) = 4.5 
 
Thus, under probability measure ℚ with the bond as the numeraire, the call price process is a 
martingale, just as the stock price process is. 
 
 
B. Multi-Period Framework 
 Suppose that we express our outcomes in terms of u and d, such that the numbers of 
upjumps and downjumps over time determine stock prices. If we are willing to assume that the 
probability measure is the same in each of these T time periods, by invoking the Binomial 
Theorem, we see that valuing the call in the multi-period binomial setting is similarly 
straightforward:2 
 

(5)   c0 = 
∑
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 The number of computational steps required to solve this equation is reduced if we 
eliminate from consideration all of those outcomes where the option's expiration date price is 
zero. Thus, a, the smallest nonnegative integer for j where ST > X is given as follows:3 

 
2 See end-of chapter exercise 3 for a derivation. See also Cox and Rubenstein [1985]. 
3 We obtain a by first determining the minimum number of price increases j needed for ST to exceed X:  

XSduS jTj
T  

0  

We then solve this inequality for the minimum positive integer value for j with ujdT-jS0> X (note: if j ≤ 0, a will equal 
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We can simplify the Binomial Model further by substituting a and rewriting as follows: 
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or, in short-hand form:4 
 

         qTBrXqTBSc T ,1',00
  

 
where q ' = qu/(1+r) and 1-q’ = d(1-q)/(1+r). The values q’, q and T are the parameters for the 
two binomial distributions. Three points are worth further discussion regarding this simplified 
Binomial model: 
 

1. First, as T approaches infinity, the binomial distribution will approach the normal 
distribution, and the binomial model will approach the Black Scholes model, which 
we will discuss later in this chapter and in Chapter 6. 

2. The current value of the option is: 
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First, this implies that the binomial distribution 𝐵 [𝑇, 𝑞] = 𝑃[𝑆் > 𝑋] provides the 
probability that the stock price will be sufficiently high at the expiration date of the 
option to warrant its exercise. Second, S0B[T, q']/B[T, q] can be interpreted as the 
discounted expected future value of the stock conditional on its value exceeding X. 

3. The call is replicated by a portfolio comprised of a long position in B[T,q'] < 1 shares 
of stock and borrowings. Investment in stock totals S0B[T,q'] and borrowings total 
X(1+r)-TB[T, q]. The replication amounts must be updated at each time period. 

 
 

0). First divide both sides of the inequality by S0dT so that (u/d)j >X/(S0dT). Next, take logs of both sides to obtain: 
))/(ln()/ln( 0

TdSXduj  . Finally, divide both sides by ln(u/d) to get the desired result. Thus, a is the smallest 

nonnegative integer for j such that ST>X. Note that when u/d >X/(S0dT), the call always exercises and we start the 
summation at j=0. 
4As the lengths of time periods approach zero, d must approach 1/u. 
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Extending the Binomial Model to Two Periods 
 Now, we will extend our illustration above from a single period to two periods, each with 
a riskless return rate equal to .25. As before, the stock currently sells for 10 and will change to 
either 15 or 5 in one time period (u = 1.5, d = .5). However, in the second period, the stock will 
change a second time by a factor of either 1.5 or .5, leading to potential values of either 22.5 (up 
then up again), 10 (up once and down once) or 2.5 (down twice). The lattice associated with this 
stock price process is depicted in Figure 1 below, and stock prices are listed with call option 
values in Figure 1 as well. 
 

 

 
 Since u, d and r are the same for each period, probability measure ℚ will be the same for 
each period. Thus, q = .75 and (1-q)= .25 in each each period. However, the hedge ratio t will 
change for each period, depending on the share price movement in the prior period:  
 

6.
)5.15(.10

06

)(0

;1;1
0 










udS

cc du  

 

9.
)5.15(.15

05.13

)(0

,;2,;2
,1 










uduS

cc duuu
u

 

 
 
          uuS0= 22.5, c2;u,u = 13.5 
 
 
 
 
 
          udS0 = 7.5, c2;u,d = 0 
          duS0 = 7.5, c2;d,,u = 0 
 
 
 
 
 
 
        ddS0 = 2.5, c2;d,d = 0 
 
 Time 0          Time 1    Time 2 
 
 
Figure 1: Two Period Binomial Model with Option Values 
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Thus, the hedge ratio must be adjusted after each price change. Actually, there is no hedge or 
hedge ratio after the stock price decreases after time zero. The call option has no value in this 
event and cannot be used to hedge the stock risk. The hedge ratio for Time 1, assuming that the 
stock price increased after time zero will be -.9, meaning that .9 shares of stock must be short 
sold for each purchased call to maintain the hedged portfolio. 
 The time-zero 2-period binomial call price is calculated as follows: 
 

c0 = 
∑
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ଵ.ହ଺ଶହ
=  4.86 

 
Notice that, in the two-period framework, the call has the same value at time zero (4.86) as 
7.59375 bonds at time zero. In addition, its time zero expected value in time 2 is also the same as 
7.59375 bonds: 
 

Eℚ[c2] = [𝑐ଶ;௨,௨ 𝑞 
ଶ + 2𝑐ଶ;௨,ௗ𝑞 (1 − 𝑞 ) + 𝑐ଶ;ௗ,ௗ (1 − 𝑞 )

ଶ] = (22.5 − 9). 5625 = 7.59375 
 
Thus, under the 2-period probability measure ℚ with the bond as the numeraire, the call price 
process is a martingale, just as the stock price process is: 
 

Eℚ[S0,2] = [𝑢ଶ𝑆଴𝑞௨
ଶ + 2𝑢𝑑𝑆଴𝑞 (1 − 𝑞 ) + 𝑑ଶ𝑆଴(1 − 𝑞 )

ଶ] = 15.625 = S0/b0, 
 
where the current value of the stock in this two-time period framework is 15.625 times the time 
zero value (.64) of the bond. 
 

Extending the Model to Three Periods 
 Now, we will extend our illustration above from two periods to three, each with a riskless 
return rate equal to .25. Two upjumps are necessary for the call to be exercised. By the third 
period, potential stock values are either 1.53 × 10 = 33.75, 1.52 × .5 × 10 = 11.25, .52 × 1.5 × 10 = 
3.75 or .53 × 10 = 1.25. The time zero call value in this three-period binomial framework is 
computed with Equations 5 and 6 as follows: 
 

𝑎 = 𝑀𝐴𝑋 ቈ𝐼𝑁𝑇 ቆ
௟௡ቂ
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𝑐଴ =
[ଷ×.଻ହమ×.ଶହ×(ଵ.ହమ×.ହ×ଵ଴ିଽ)]ା[ଵ×.଻ହయ×(ଵ.ହయ×ଵ଴ିଽ)]

(ଵା.ଶହ)య
= 5.832   

 
Put-call parity still applies:5 

 
5 We will discount the exercise money with a discrete discount function since the binomial model is a discrete time 
model. 
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p0 = 5.832 + 9/(1.25)3 - 10 = 0.44 

 

C. Multiplicative Upward and Downward Movements in Practice 
 One apparent difficulty in applying the binomial model as it is presented above is in 
obtaining estimates for u and d that are required for p; all other inputs are normally quite easily 
obtained. There are several methods that are used to obtain parameters for the binomial method 
from the actual security returns generating process. For sake of simplicity here, we will assume 
that all investors are risk-neutral, and that physical probabilities and their martingale equivalents 
are the same (p = q). For example, following Cox, Ross and Rubinstein [1979] derive the 
following to estimate probabilities of an uptick p and downtick (1 - p):6 
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Cox et al. also proposes the following to estimate u and d in the Binomial approximation to the 
Wiener process, where σ is the standard deviation of stock returns: 
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or, if n and T differ from 1: 
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 Suppose, for example, that for a particular Wiener process, σ = .30 and rf = .05. Using 
Equations 20 and 22 above, we estimate p, u and d for a single time period binomial process as 
follows: 
 

3498588.13.  eu  

7408182.
1


u
d  

 
The Binomial Model in Practice: An Illustration 
 Suppose that we wished to evaluate a call and a put with an exercise price equal to $110 
on a share of stock currently selling for $100. The underlying stock return standard deviation 
equals .30 and the current riskless return rate equals .05. If both options are of the European 
variety and expire in six months, what are their values? 

First, we will compute the call's value using the binomial model. We will vary the 
number of jumps in the model as the example progresses. First, let n = 1 and use Equations 20 
and 22 to compute p, u and d: 
 

 
6 See Appendix A for derivations of p, u and d. In some of our illustrations, there will be a somewhat minor 
deviation from the probability estimates given by Equation set 20. The difference is likely that Equation set 20 
allows interest (rf) to be continuously compounded whereas we often use discrete compounding to calculate 
probabilities. This distinction is not important for our purposes here. 
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Thus, in a risk-neutral environment, there is a .5064 probability that the stock price will increase 
to 123.63 and a .4936 probability that the stock price will be 80.88678. Similarly, in a risk 
neutral environment, there is a .5064 probability that the call will be worth 13.63; therefore, its 
current value is 6.73 = .5064  13.63  e-.05.5. The call value is determined by the binomial 
model as follows where n = a = 1:7 
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We can also use the binomial model to value the put with identical exercise terms on the 
underlying stock:8 
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Dividing an Interval into Sub-Intervals 
 Now, divide the single six-month interval into two three-month intervals; that is, n = 2. 
We will now use a two-period binomial model to evaluate calls and puts on this stock. First, we 
use Equations 20 and 22 to compute p, u and d:9 

 
7a is determined by Equation 16 and is the first positive integer where ujdn-jS0 > X. That is, the minimum number of 
up-jumps required for exercise of the call option equals a. Any smaller number of stock up-jumps produces a 
terminal call value equal to zero, and need not be considered. 
8 Recall that put-call parity, demonstrated in Section C, can be used to value puts. We verify this for this example by 
using Equation 3 as follows: 14.08 = 6.73 + 110e-.05×.5 - 100. 

9 When there are multiple jumps per period (n > 1), and/or when T does not equal one,
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Thus, there is a .50432 probability that the stock price will increase to 134.98, a .5 probability 
that the stock price will remain unchanged at 100 and a .49572 probability that the stock price 
will decline to 74.08. Thus, there is a .2543 probability that the call will be exercised, in which 
case, it will be worth 24.98. Therefore, the call's current value is 6.20 = .2543 × .24.98 × e-.05  .5. 
Call and put values are determined by the binomial model as follows where n = a = 2: 
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 As the 6-month period is divided into more and finer subintervals, the values of the call 
and put will approach their Black-Scholes values. Table 1 extends this example to more than two 
subintervals, ultimately approaching the Black-Scholes model. 
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    n  c0    p0    _ 
    1 6.73 14.02 
    2 6.20 13.48 
    3 5.47 12.72 
    4 6.04 13.30 
    5 5.18 12.44 
    6 5.91 13.17 
    7 5.43 12.68 
    8 5.81 13.06 
    9 5.57 12.82 
   10 5.73 12.98 
   50 5.63 12.89 
  100 5.59 12.85 
     5.59 12.85 
  Volatility             = .30 
  Riskless rate             rf  = .05 
  Exercise price           X = 110 
  Initial stock price      S0 = 100 
  Term to expiration t  = .5 
 
Table 1: Convergence of the Binomial Model to the Black-Scholes Model 
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Exercises 
 
1.  Examination of price data for a given stock reveals that the stock has a 41% probability 
of increasing by 42% in any given six-month period and a 59% probability of decreasing by 
30% during any six-month period. The stock has a current market value equal to $60; a one- 
year call option exists on the stock with an exercise price equal to $50. Assume an annual 
riskless return rate equal to 5% and that it is compounded continuously. 
   a.  What is the probability that the stock's price will exceed $100 at the end of six months? 
   b.  What is the probability that the stock's price will exceed $100 at the end of one year? 
        (One year represents two six-month intervals.) 
   c.  What are the two potential stock prices at the end of the first six-month period? What 
        are the probabilities associated with each of these prices? 
   d.  What are the three potential stock prices at the end of the second six-month period? 
        What are the probabilities associated with each of these prices? 
   e.  What are the three potential call option values at the end of one year? That is, what 
        would be the value of the call option conditional on each of the three potential stock 
         prices being realized? 
   f.  If the stock price increases during the first six-month period, two potential stock prices 
       are possible at the end of one year. What are these two prices? What are the potential 
       call values? Based on these two potential prices and associated probabilities, what 
       would be the value of the call option if the stock price increases during the first six- 
       month period? Note that we are pricing the call based upon the physical probabilities, so that     
       we will not obtain risk neutral pricing. 
   g.  If the stock price decreases during the first six-month period, two potential stock prices 
       are possible at the end of one year. What are these two prices? What are the potential 
       call values? Based on these two potential prices and associated probabilities, what 
       would be the value of the call option if the stock price decreases during the first six- 
       month period? 
   h.  Based on the two potential call option values estimated in parts f and g and their 
        associated probabilities, what is the current value of the call? 
 
2.  A stock currently selling for $100 has a 75% probability of increasing by 20% in each time 
period and a 25% chance of decreasing by 20% in a given period. Assume a binomial process. 
What is the expected value of the stock after four periods? 
 
3.  In We have claimed that in a multi-period binomial framework affecting stock prices, c0 = 
∑

೅!

ೕ!(೅షೕ)!
௤ 

ೕ(ଵି௤ )
೅షೕெ஺௑ൣ௨ೕௗ೅షೕௌబି௑,଴൧೅

ೕసబ

(ଵା௥೑)೅
. Derive this formula for call valuation. You may assume 

that the riskless hedge can be created and that valuation occurs in a riskless framework over T 
periods of time. 
 
4.  Consider the binomial returns process with upjump u and downjump d covered earlier. In that 
section, we claimed that if pu + (1- p)d = 1, then St is a martingale.  
     a. Demonstrate that St is indeed a martingale under the circumstances given above. 
     b. Suppose that the riskless bond prices are B0 = 1 and Bt = (1+r)t. Further assume that St 
follows the binomial returns process described above with probability q of an upjump. 
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Demonstrate that if qu + (1- q)d =1+r, then St is a martingale with respect to the bond (change of 
numeraire). 
     c.  Under the same circumstances as in part b above, demonstrate that if q = (1+r-d)/(u-d), 
then St is a martingale with respect to the bond. 
 
5.  Assume that a binomial pricing model holds for all securities with a probability p of an 
upjump 1+u and a probability 1 – p of a downjump 1 – d. Also suppose that a risk free rate of 
return r holds at each time interval.  
    a.  Derive an expression that solves for the discounted expected value of the price Sn at time n 
given the price Sm at time m.  
     b.  Find the value of p so that the discounted expected value satisfies E[Sn|Sm]/(1+r)n-m=Sm for 
m<n; that is, find the value of p so that Sn is a martingale (in bond numeraire). 
 
6.  Consider a one time period, two potential outcome framework where there exists Company Q 
stock currently selling for $50 per share and a riskless $100 face value T-Bill currently selling 
for $90. Suppose Company Q faces uncertainty, such that it will pay its owner either $30 or $70 
in one year. Further assume that a call with an exercise price of $55 exists on one share of Q 
stock. 
  a. Define the Equivalent Probability Measure for this payoff space. 
  b. Is this measure an equivalent martingale (risk-neutral probability measure)? 
  c. Is this market complete? 
  d. What are the two potential values the call might have at its expiration? 
  e. What is the riskless rate of return for this example? Remember, the Treasury bill pays 

$100 and currently sells for $90. 
  f. What is the hedge ratio for this call option? 
  d. What is the current value of this option? 
  h. What is the value of a put with the same exercise terms as the call? 
 
7.  Rollins Company stock currently sells for $12 per share and is expected to be worth either 
$10 or $16 in one year. The current riskless return rate is .125.  
   a. Define the Equivalent Probability Measure for this payoff space. 
   b. Is this market complete? 
   c. What would be the value of a one-year call with an exercise price of $8? 
 
8.  The riskless return rate equals .08 per year in a given economy. A stock, which currently sells 
for $50, has an expected per-jump multiplicative upward movement for this stock is 1.444, and d 
= 1/u. Under the binomial framework, what would be the value of nine-month (.75 year) 
European calls and European puts with striking prices equal to $80 if the number of tree steps (n) 
over the 9-month period were: 
    a. 2 
    b. 3 
    c. 8 
Assume the riskless return rate is compounded over each relevant time increment for parts a, b, 
and c. 
 
9.   Ibis Company stock is currently selling for $50 per share and has a multiplicative upward 
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movement equal to 1.2776 and a multiplicative downward movement equal to .7828. What is the 
value of a nine-month (.75 year) European call and a European put with striking prices equal to 
$60 if the number of tree steps were 2? Assume a riskless return rate equal to .081. 
 
10.  Show that in the binomial pricing model, the expectation:  

𝐸[𝑆௧|𝑆௦] = 𝑆௦[𝑝𝑢 + (1 − 𝑝)𝑑]௧ି௦ 
for s<t can be derived from the equation: 

𝐸[𝑆௧|𝑆଴] = 𝑆଴[𝑝𝑢 + (1 − 𝑝)𝑑]௧. 
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Solutions 
 
1. a. 0; The highest potential stock price equals $85.2. 
    b. 2 upjumps are required; .412 = .1681 
    c. 1.42 × $60 = $85.2 with probability .41; .7 × $60 = $42 with probability .59  
    d. 1.422 × $60 = $120.98 with probability .412=.1681; 1.42 × .7 × $60 = $59.64 with 

probability 2×.41×.59=.4838; .72 × $60 = $29.4 with probability .592=.3481. 
    e. MAX[$120.98-$50,0] = $70.98; MAX[$59.64-$50,0] = $9.64; MAX[$29.4-$50,0] =0 
    f. Potential stock prices are $120.98 and $59.64 

Potential call values are $70.98 and $9.64 
The discounted call value would be [.41×$70.98+.59×9.64]e-.05×.5 = $33.93 

      g. Potential stock prices are $59.64 and $29.58 
Potential call values are $9.64 and 0 

                              The discounted call value would be [.41×$9.64+.59×0]e-.05×.5=$3.85   
      h.    The current discounted call value is [.41×$33.93+.59×$3.85]e-.05×.5=$15.78 
 
2. The expected value of the stock is computed as follows: 
 

E[S4]=S0[pu+(1-p)d]t=[.75×1.2+.25×.8]4=$146.41. 
 
3.  The value of the call should be the expected value of the random variable MAX[ST – X,0] 
discounted by the risk-free rate of return. To compute the expected value, suppose there have 
been j upjumps to time T. The remaining T-j jumps would then be downjumps.  The value of 

MAX[ST – X,0] in this case is MAX[ujdT-jS0– X,0], and this occurs with probability ቀ௡
௝
ቁ 𝑞௝(1 −

𝑞)்ି௝.  So, the expected value equals: 

𝐸ℚൣ𝑀𝐴𝑋[𝑆் − 𝑋, 0]൧ = ෍ ൬
𝑛

𝑗
൰ 𝑞௝(1 − 𝑞)்ି௝𝑀𝐴𝑋ൣ𝑢௝𝑑்ି௝𝑆଴, 0൧.

்

௝ୀ଴

 

With a risk-free rate of return or discount rate equal to r, the time T value will have been 
discounted by (1 + r)-T. The result now follows. 
 
4.a.  We showed earlier that we have the conditional expectation: 
 

𝐸ℙ[𝑆௧|𝑆௦] = [𝑝𝑢 + (1 − 𝑝)𝑑]௧ି௦𝑆௦ 
 
for s<t. If  pu + (1- p)d = 1, then [pu + (1- p)d]t-s = 1 and 𝐸ℙ[𝑆௧|𝑆௦] = 1 × 𝑆௦  = 𝑆௦. 
   b.  From section 5.2.1, we know that 𝐸ℚ[𝑆௧|𝑆௦] = [𝑞𝑢 + (1 − 𝑞)𝑑]௧ି௦𝑆௦ for s<t. From time s  
to time t, we need to discount the expected value by the amount (1+r)t-s . With respect to the 
bond, the stock expected value is 

 
ாℚ[ௌ೟|ௌೞ]

[ଵା௥]೟షೞ
=

[௤௨ା(ଵି௤)ௗ]೟షೞௌೞ

[ଵା௥]೟షೞ
= [

௤௨ା(ଵି௤)ௗ

ଵା௥
]௧ି௦𝑆௦ = 1 × 𝑆௦ = 𝑆௦ 

 
if (qu+(1-q)d)/(1+r)=1 or equivalently qu+(1-q)d=1+r.  Thus, St is a martingale with respect to 
the bond in this case. 
   c.  qu + (1- q)d = 1+r. Rewrite as qu+d-qd = 1+r. Thus, q(u-d)+d = 1+r and q = (1+r-d)/(u-d).  
 



17 
 

5.   a. Substituting 1+u in place of u, 1 – d in place of d, n in place of t, and m in place of s in the 
formula for the expected value of St given Ss at the end of section 5.2.1, we obtain:  

EP[Sn|Ss]=[p(1+u)+(1-p)(1-d)]n-mSm. 
Since a risk free investment of $1 at time m will result in its value equaling (1+r)n-m at time n, 
then the discounted expected value of Sn  at time m must be 

𝐸ℙ[𝑆௡|𝑆௠]

[1 + 𝑟]௡ି௠
=

[𝑝(1 + 𝑢) + (1 − 𝑝)(1 − 𝑞)]௡ି௠

[1 + 𝑟]௡ି௠
𝑆௠

= ቈ
𝑝(1 + 𝑢) + (1 − 𝑝)(1 − 𝑞)

1 + 𝑟
቉

௡ି௠

𝑆௠. 

 
     b.  To assure that Sn is a martingale, which means that E[Sn|Sm]/(1+r)n-m = Sm, we require: 

𝑝(1 + 𝑢) + (1 − 𝑝)(1 − 𝑑)

1 + 𝑟
= 1. 

Solving for p gives 

𝑝 =
𝑑 + 𝑟

𝑢 + 𝑑
. 

 
6. a. Risk-neutral probabilities are computed as follows: 

ቂ
30 70

100 100
ቃ ൤

𝜓଴,ଵ;ௗ

𝜓଴,ଵ;௨
൨ = ቂ

50
90

ቃ  ;    
𝜓଴,ଵ;ௗ =  .325

𝜓଴,ଵ;௨ =  .575
 

𝑞଴,ଵ;ௗ = 𝜓଴,ଵ;ௗ/(𝜓଴,ଵ;ௗ + 𝜓଴,ଵ;௨) =  .36111

𝑞଴,ଵ;௨ = 𝜓଴,ଵ;௨/(𝜓଴,ଵ;ௗ + 𝜓଴,ଵ;௨) =  .63889
 

    b.  Yes: There are no arbitrage strategies in this payoff space. 
    c.  Yes: The Probability measure is unique because the number of priced securities equals the 
number of potential outcomes, and their set of payoff vectors is complete. 
    d. cT = MAX[0,ST-X]; cT = $0 or $15 
    e. $100/$90 - 1 = .1111 
    f. The hedge ratio is computed as follows: 

)(0 udS

cc du




 375.
)4.16(.50

015






 

    g.
   c0 = 

௖ೠ௤ା௖೏(ଵି௤)

ଵା௥
=  

ଵହ.଺ଷ଼଼ଽ ା ଴ (ଵି.଺ଷ଼଼ଽ)

ଵା.ଵଵଵଵଵ
=  8.625 

    h.   p0 = 
௣ೠ௤ା௣೏(ଵି௤)

ଵା௥
=  

଴.଺ଷ଼଼ଽ ା ଶହ (ଵି.଺ଷ଼଼ଽ)

ଵା.ଵଵଵଵଵ
=  8.125 

 
7. a.  Risk-neutral probabilities are computed as follows: 

ቂ
10 16

100 100
ቃ ൤

𝜓଴,ଵ;ௗ

𝜓଴,ଵ;௨
൨ = ቂ

12
88.888889

ቃ  ;    
𝜓଴,ଵ;ௗ =  .37037

𝜓଴,ଵ;௨ =  .518519
 

𝑞଴,ଵ;ௗ = 𝜓଴,ଵ;ௗ/(𝜓଴,ଵ;ௗ + 𝜓଴,ଵ;௨) =  .416667

𝑞଴,ଵ;௨ = 𝜓଴,ଵ;௨/(𝜓଴,ଵ;ௗ + 𝜓଴,ଵ;௨) =  .583333
 

    b.  Yes: There are no arbitrage opportunities, the probability measure is unique because the 
number of priced securities equals the number of potential outcomes, and their set of payoff 
vectors is complete. 
    c. This problem can be set up in either of two comparable ways: 
   First, find the hedge ratio:                     
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)(0 udS

cc du




  

 1
)3333.183333(.12

28





  

            Now, value the call: 

 
r

dSCSr
c d


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
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)1( 00
0
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 8889.4
125.1

1283333.)1(212)1()125.1(
0 




c  

 Alternatively, the risk neutral probabilities from above can be used: 

c0 = 
௖ೠ௤ା௖೏(ଵି௤)

ଵା௥
=  

଼.ହ଼ଷଷଷ ା ଶ (ଵି.ହ଼ଷଷଷ)

ଵା.ଵଶହ
=  4.88889 

 
8.  First, we will estimate qu from u, d (which equals 1/u = .69252) and r: 

692.
444.1

1
d 52;

 
449087.0

69252.444.1
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uq  

For the 2-time period framework, call valuation calculations proceed as follows: 

   210,

69252.

444.1
ln

69252.50

80
ln

2

























































 MAXINTa  

 
 

61.4
2/75.08.1

805069252.444.1550913.449087.
2

222222

0 







c  

For the 3-time period framework, call valuation calculations proceed as follows: 
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For the 8-time period framework, call valuation calculations proceed as follows: 
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=14.39 

Put values are found with put-call parity. The following are call and put values for the 2, 3 and 8 
period frameworks:

     n   c0     p0 
    2 4.61 30.02 
    3 5.50 30.89 
    8        14.39 39.75 
The calls are easily valued in the 2- and 3-step models because the maximum number of upjumps 
(2 and 3) are required for exercise. In the 8-period framework, 5 to 8 upjumps were required for 
exercise.  
 
9. S0 = 50, X = 60, T = 0.75, r = 0.081, u = 1.2776, d = 0.7828 

𝑞௨ =
1 + .081 × .75 × .5 − .7828

1.2776 − .7828
= .5 

 𝑎 = 𝐼𝑁𝑇 ቈ𝑀𝐴𝑋 ቆ
௟௡ቀ

లబ

ఱబ×.ళఴమఴమቁ

௟௡ቀ
భ.మళళల

.ళఴమఴ
ቁ

, 0ቇ + 1቉ = 2  

𝑐଴ =
. 5ଶ ×. 5ଶିଶ[1.2776ଶ ×. 7828ଶିଶ × 50 − 60]

(1 + .081 × .75 × .5)ଶ
= $5.09 

 c0 = $5.09;   Based on put-call parity, p0 = -50+60(1+.081×.75×.5)-2 + 5.09 =$11.60   
 

10. Simply regard time s as time 0, so that S0 becomes the value Ss. Thus time t  becomes time t-s 
since it takes time t-s to go from time s to time t. The value St remains St, since to go from the 
value Ss in t-s steps of time will give us St. So keeping St on the left side of the equation, 
replacing S0 with Ss and t with t-s on the right side of the given equation gives the desired result. 
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Appendix A: The Binomial Model: Additional Considerations 
 
A Computationally More Efficient Version of the Binomial Model 
 Here, we simply discuss a computationally more efficient version of the n-time period 
Binomial model equation 17 from the text: 
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The number of computational steps required to solve Equation 17 is reduced if we eliminate 
from consideration all of those outcomes where the option's expiration date price is zero. Thus, 
the smallest non-negative integer for j where Sn>X is the smallest integer that exceeds the 
following: 
 

(6)   






































 0,

ln

ln
0

d

u

dS

X

MAXa
n

 

 
This result is obtained by first determining the minimum number of price increases j needed for 
Sn to exceed X: 
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We then solve this inequality for the minimum non-negative integer value for j such that u jdn-jS0 
> X. Take logs of both sides to obtain: 
 

(A.2) 

       

     0

0

lnlnlnln

lnlnlnlnln

SdnX
d

u
j

XSdjdnuj










 

 
Next divide both sides by ln(u/d) and simplify to obtain Equation 6, where a is the smallest non-
negative integer for j for which Sn>X: Finally, we substitute Equation 6 into Equation 5 to obtain 
The Binomial Option Pricing Model: 
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or: 
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or, in shorthand form: 
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where p ' = pu/(1+rf). There are two more points regarding equation 7.b. First, assuming that 
investors behave as though they are risk neutral, B2[a, n, p] can be interpreted as the probability 
that the stock price will be sufficiently high at the expiration date of the option to warrant its 
exercise. Second, B2[a, n, p '] can be interpreted as a hedge ratio, though it must be updated at 
every period. 
 
Obtaining Multiplicative Upward and Downward Movement Values 
  One apparent difficulty in applying the binomial model as it is presented above is 
in obtaining estimates for u and d that are required for p; all other inputs are normally quite 
easily obtained. There are several methods that are used to obtain parameters for the binomial 
method from the actual security returns generating process. For example, following Cox, Ross 
and Rubinstein [1979], we can begin the process of estimating the mean and variance to be used 
in the binomial distribution by first approximating the mean and variance for the binomial 
process from the historical Wiener process as follows: 
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Approximation 2 approaches equality as T approaches zero. Scaling S0 to one such that we work 
with returns rather than actual security prices, the following can be used for returns variance of a 
binomial process: 
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We will rewrite Equation 3 as follows:10
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10 The following are algebraic steps to obtain Equation 4 from Equation 3: 
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Assume that the binomial process will lead to expected return for a security equaling the riskless 
rate: 
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Solving Equation 5 for p enables us to estimate probabilities of an uptick p and downtick (1 - p) 
as: 
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 If we define d as 1/u such that ud = 1, we can rewrite Equation 4, the variance of returns, 
as follows: 
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Thus, we have simply substituted some constant eδ for u. Substituting  for  will normally 
provide a good approximation for variance (improving as the number of jumps in the binomial 
process, n approaches infinity): 
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Thus, we can use the following to estimate u and d in the Binomial approximation to the Wiener 
process: 
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or, if n and T differ from 1: 
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 Suppose, for example, that for a particular Wiener process, σ = .30 and rf = .05. Using 
equations (5) and (8) above, we estimate p, u and d for a single time period binomial process as 
follows: 
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We can verify our estimates with Equations (4) and (7) as follows: 
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  0512.17408182.5097409.13498588.15097409.   
 

      0926974.5097409.15097409.1
23.3.2   eeeepp   

 
 As discussed above, there are several procedures for getting parameters , u, d and p for 
the binomial distribution. This procedure is probably the most commonly used, in part, because it 
provides a relatively straightforward method for estimating option Greeks. The primary difficulty 
with the one presented above is that it may result in negative probabilities. An additional 
methodology for estimating binomial distribution parameters is given in Jarrow and Turnbull 
[1996], pp. 136-38. 
 
 
 
 


