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Chapter 9: Fundamentals of Stochastic Calculus 
 

A. Stochastic Calculus: An Introduction  

  Here in Chapter 9, we will introduce and apply stochastic differential equations to 

modeling the pricing behavior of derivative instruments. In this chapter, we will introduce the 

theory and the methods of stochastic calculus. Although stochastic and ordinary calculus share 

many common properties, there are fundamental differences. The probabilistic nature of 

stochastic processes distinguishes them from the deterministic functions associated with ordinary 

calculus. Since stochastic differential equations so frequently involve Brownian motion, second 

order terms in the Taylor series expansion of functions become important, in contrast to ordinary 

calculus where they can be ignored. This attribute is reflected in Itô's Lemma, which is a 

powerful tool used to solve stochastic differential equations. 

Arbitrage pricing (pricing securities relative to securities or portfolios producing identical 

payoff structures) can be accomplished numerous ways. A most useful feature of arbitrage 

pricing is that it does not require that we forecast security prices or even calculate risk premiums 

or expected returns. Such forecasts are, at best, unreliable and difficult to make. We use option 

pricing models such as the Black-Scholes or Binomial models that require no inputs for expected 

future security prices, risk premiums or expected returns (aside from the riskless security). 

However, such models do require knowledge of underlying security volatility, so it will be 

convenient to be able to delete references to expected security returns while maintaining 

information concerning volatility. This will entail creation of martingales. 

Our analysis in this chapter will generally focus on continuous-time stochastic processes, 

though for development purposes, we will make references in certain sections to discrete-time 

processes for sake of simplicity. In this section, we will introduce stochastic differentiation and 

stochastic integration. In the section following, we will discuss Taylor series expansions and Itô's 

Lemma along with a number of applications and further discussions concerning stochastic 

integration. Much of the mathematics in this chapter will be applied to financial problems, 

mostly related to options in Chapter 10.     

 

Differentials of Stochastic Processes 

In many respects, differentials of stochastic processes mirror differentials of real-valued 

functions from ordinary calculus, sharing many of their properties. However, there are also 

important differences. In ordinary calculus, if Xt is a real-valued function of the real variable t, 

then the derivative 𝑋𝑡
′ exists for a large class of functions. If Xt is a stochastic process, then it is 

usually not possible to well-define the derivative of Xt with respect to t, at least for the class of 

stochastic processes that are relevant in finance. This is because normally Xt involves Brownian 

motion, and Brownian motion is not differentiable. Nevertheless, we can still study the 

differential of a stochastic process, which is the change of a stochastic process Xt resulting from a 

small change in t. Define the differential dXt of a stochastic process Xt to be a quantity that 

satisfies the property 

 

lim
𝑑𝑡→0

𝑋𝑡+𝑑𝑡 − 𝑋𝑡 − 𝑑𝑋𝑡

𝑑𝑡
= 0. 

 

The differential dXt is used to approximate Xt+dt –Xt, and any terms that approach zero after 

dividing by dt as dt→0 can be ignored. This is the same requirement that we have seen in 
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ordinary calculus. In the following sub-sections, we will compare an example of a real-valued 

(ordinary) differential with that of a stochastic differential. 

 

An Example of a Real-Valued Differential from Ordinary Calculus 

 Consider the (ordinary) real-valued function X(t) = t3, with t being a real variable. Then: 

 

𝑋(𝑡 + 𝑑𝑡) − 𝑋(𝑡) = (𝑡 + 𝑑𝑡)3 − 𝑡3 = 𝑡3 + 3𝑡2𝑑𝑡 + 3𝑡(𝑑𝑡)2 + (𝑑𝑡)3 − 𝑡3 

= 3𝑡2𝑑𝑡 + 3𝑡(𝑑𝑡)2 + (𝑑𝑡)3. 
 

Notice that [3t(dt)2 + (dt)3]/dt = 3tdt + (dt)2 → 0 as dt → 0. This means that for small values of 

dt, 3t(dt)2 + (dt)3 is much smaller than 3t2dt and we can approximate X(t+dt)-X(t) by 3t2dt. So, 

the differential of X(t) = t3 is dX = 3t2dt. As we saw in the review of the differential for real-

valued continuously differential functions in Chapter 1, the differential of a function X(t) equals 

the derivative of the function times dt. For both real-valued and stochastic differentials, one can 

always choose Xt+dt –Xt itself as the differential dXt, but it is often better to use another choice 

that is either more useful or leads to a simpler expression. We saw this illustrated earlier in this 

book, and we will see this situation again in the example below. 

 

An Example of a Stochastic Differential 

Next, consider the following stochastic process Xt = tZt, with Zt being standard Brownian 

motion. We calculate that 

 

𝑋𝑡+𝑑𝑡 − 𝑋𝑡 = (𝑡 + 𝑑𝑡)𝑍𝑡+𝑑𝑡 − 𝑡𝑍𝑡 = 𝑡(𝑍𝑡+𝑑𝑡 − 𝑍𝑡) + 𝑍𝑡+𝑑𝑡𝑑𝑡 

= 𝑡(𝑍𝑡+𝑑𝑡 − 𝑍𝑡) + 𝑍𝑡+𝑑𝑡𝑑𝑡 − 𝑍𝑡𝑑𝑡 + 𝑍𝑡𝑑𝑡 = 𝑡(𝑍𝑡+𝑑𝑡 − 𝑍𝑡) + (𝑍𝑡+𝑑𝑡 − 𝑍𝑡)𝑑𝑡 + 𝑍𝑡𝑑𝑡 

= 𝑡𝑑𝑍𝑡 + 𝑑𝑍𝑡𝑑𝑡 + 𝑍𝑡𝑑𝑡. 
 

Now, consider choosing dXt = tdZt + Ztdt as a differential of Xt. With this choice, note that 

 

𝑋𝑡+𝑑𝑡−𝑋𝑡−𝑑𝑋𝑡

𝑑𝑡
=

𝑡𝑑𝑍𝑡+𝑑𝑍𝑡𝑑𝑡+𝑍𝑡𝑑𝑡−𝑡𝑑𝑍𝑡−𝑍𝑡𝑑𝑡

𝑑𝑡
=

𝑑𝑍𝑡𝑑𝑡

𝑑𝑡
= 𝑑𝑍𝑡. 

 

Since dZt = Zt+dt – Zt, dZt is distributed normally with mean 0 and variance dt. Thus, with 

probability approaching 1, the values of dZt must be on the order of the standard deviation √𝑑𝑡. 

This means that the quotient above approaches 0 with probability 1 as dt → 0. This confirms that 

dXt = tdZt + Ztdt is a differential of Xt. 

One of the most important applications of the differential is to evaluate integrals. Suppose 

a term in the integrand of an integral has the property that if one divides it by dt, the result will 

approach 0 as dt approaches 0. Then, the term itself will not contribute at all to the integral. This 

means that such a term can be ignored. 

 Next, we state three elementary but important properties of the differential: 

 

1. Linearity: If Xt and Yt are stochastic processes, and a and b are constants, then 

d(aXt +bYt) = adXt +bdYt.  

2. General Product Rule: If Xt and Yt are stochastic processes, then d(XtYt) = XtdYt + 
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YtdXt +dXtdYt.   

3. Special Product Rule: Suppose that dXt = μtdt + σtdZt and dYt =ρtdt where σt, μt, 

and ρt are stochastic processes, then d(XtYt) = XtdYt + YtdXt. 

 

First, the linearity property is stated in terms of a sum of just two processes, but it can be 

extended to any finite sum of constant multiples of stochastic processes. The special product rule 

is expressed in differential form. It has the same form as in ordinary calculus. However, we note 

that the result would be different if dYt had a Brownian motion component.1 

 

Stochastic Integration 

            In many respects, the theory of integration of stochastic processes mirrors integration of 

real-valued functions. If f(x) is a real-valued continuous function defined on the interval a ≤  x ≤  

b, recall that: 

 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= lim
∆𝑥→0

∑ 𝑓(𝑥𝑖)∆𝑥.

𝑛−1

𝑖=0

 

 

 Integration of a stochastic process Xt with respect to the real variable t can be defined in a 

way analogous to that of a real-valued continuous function in ordinary calculus. In order to take 

the integral Xt over the interval a ≤ t ≤ b, divide the interval into n equal parts so that Δt = (b – 

a)/n and ti = a + iΔt for i = 0,1,…,n.  Define 

 

∫ 𝑋𝑡𝑑𝑡

𝑏

𝑎

= lim
∆𝑡→0

∑ 𝑋𝑡𝑖

𝑛−1

𝑖=0

∆𝑡. 

 

Observe that whenever this integral exists the result is a random variable, since it is a limiting 

sum of random variables. 

 Next, we define the integral of a stochastic process Xt with respect to a stochastic process 

Yt. Divide the interval a ≤ t ≤ b in the same way as above. Then 

 

∫ 𝑋𝑡𝑑𝑌𝑡

𝑏

𝑎

= lim
∆𝑡→0

∑ 𝑋𝑡𝑖

𝑛−1

𝑖=0

(𝑌𝑡𝑖+1
− 𝑌𝑡𝑖

). 

 

Once again, whenever this integral exists, the result is a random variable, since it is a limiting 

sum of random variables. Notice that our first definition of an integral is a special case of the 

second by choosing Yt = t so that dYt = dt. Although Yt = t is a real-valued function, it is also a 

special case of a stochastic process. This follows from the observation that for each fixed value 

of t, Xt = t with probability 1. It is a random variable that can only take on one value; namely, t at 

time t. 

 

 
1 Proofs of these three properties are available in Knopf and Teall [2015]. 
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Standard Brownian Motion Process 

 Consider the following particular case of stochastic integration that will arise frequently 

in finance. Suppose that σt and μt are stochastic processes (note that σt and μt can be chosen so 

that each takes on single constant values) and Zt is standard Brownian motion. Then 

 

∫(𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑍𝑡)

𝑏

𝑎

= lim
∆𝑡→0

∑[𝜇𝑡𝑖
∆𝑡 + 𝜎𝑡𝑖

(𝑍𝑡𝑖+1
− 𝑍𝑡𝑖

)],

𝑛−1

𝑖=0

 

 

Where Δt = (b – a)/n, t0 = a, tn = b, and ti+1 – ti = Δt for i = 1, 2, …, n. Observe that the 

expression on the right-hand side above is a sum of random variables, and if the limit exists, then 

the result will be a random variable. In fact, for a fairly general class of stochastic processes that 

limit above does exist and the result is a well-defined random variable. 

 

Contrasting Integration of Real-valued Functions with Integration of Stochastic Processes 

Consider the following two illustrations involving integration, the first a real-valued 

function and the second a stochastic process where Zt is standard Brownian motion: 

 

1.      ∫ 5𝑑𝑋𝑡
2

0
 with Xt = t2. 

∫ 5𝑑𝑋𝑡

2

0

= 5𝑋𝑡|0
2 = 5𝑡2|0

2 = 5(2)2 − 5(0)2 = 20 

 

2.      ∫ 5𝑑𝑍𝑡
2

0
 

∫ 5𝑑𝑍𝑡 = 5𝑍𝑡|0
2

2

0

= 5𝑍2 − 5𝑍0 = 5𝑍2. 

 

The solution in the first illustration is a number. The solution in the second illustration is a 

random variable since Z2 is a normally distributed random variable, with mean 0 and variance 2. 

Thus, 5Z2 is a normally distributed random variable with mean 0 and variance (5)2(2) = 50. 

Suppose one keeps the lower limit of integration a constant and replaces the upper limit 

of integration with a variable. In the case of integration of real-valued functions, the result is a 

real-valued function. Analogously, in the case of integration of stochastic processes, the result is 

a stochastic process. 

 

Elementary Properties of Stochastic Integrals 

 

Integral of a Stochastic Differential: 

If Xt is a stochastic process, the integral of a stochastic differential dXt is simply: 

 

∫ 𝑑𝑋𝑡

𝑏

𝑎

= 𝑋𝑏 − 𝑋𝑎. 
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Alternatively, if we define the notation 𝑋𝑡|𝑎
𝑏 = 𝑋𝑏 − 𝑋𝑎 as is used in ordinary calculus, then we 

can write this property as: 

 

∫ 𝑑𝑋𝑡 = 𝑋𝑡|𝑎
𝑏 = 𝑋𝑏 − 𝑋𝑎

𝑏

𝑎

. 

 

Linearity 

If Xt, Yt, Ut, and Vt are stochastic processes, and C and D are real numbers, then 

 

∫(𝐶𝑈𝑡𝑑𝑋𝑡 + 𝐷𝑉𝑡𝑑𝑌𝑡) = 𝐶 ∫ 𝑈𝑡𝑑𝑋𝑡

𝑏

𝑎

𝑏

𝑎

+ 𝐷 ∫ 𝑉𝑡𝑑𝑌𝑡

𝑏

𝑎

, 

 

as long as each of the integrals are defined. This rule constitutes the familiar "sum” and “constant 

multiple” rules for integrals of real valued functions in calculus carrying over to stochastic 

processes. 

 

Illustration 

Consider the following illustration. Suppose that the price of a security follows an 

arithmetic Brownian motion process with drift (a deterministic increment at a constant rate over 

time): dXt = .06dZt +.02dt. Further suppose that the price of the security at time zero equals 20: 

X0 = 20. Now we seek to find Xt, the price of the security at time t: First observe that 

 

∫ 𝑑𝑋𝑠

𝑡

0

= ∫(. 06𝑑𝑍𝑠 + .02𝑑𝑠)

𝑡

0

. 

 

By the first property, the left side equals: 

 

∫ 𝑑𝑋𝑠

𝑡

0

= 𝑋𝑠|0
𝑡 = 𝑋𝑡 − 20, 

 

By linearity and the first property, the right-side equals: 

 

∫(. 06𝑑𝑍𝑠 + .02𝑑𝑠) = (. 06𝑍𝑠 + .02𝑠)|0
𝑡

𝑡

0

= .06𝑍𝑡 + .02𝑡 − .06𝑍0 = .06𝑍𝑡 + .02𝑡. 

 

Setting these results equal and solving for Xt, we find that Xt = 20+.02t +.06Zt. The security 

price at time t equals its price at time zero plus .02 multiplied by the elapsed time plus .06 times 

the Brownian motion. The price is a normally distributed random variable with mean 20+.02t 

and variance (.06)2t. 

 

B. A Digression on Taylor Series Expansions 



6 
 

 As preparation for our discussion on Itô's Lemma in the next section, we will briefly 

review Taylor series expansions, a basic topic in Calculus. We can use the Taylor series 

expansion to estimate the change in an infinitely differentiable function y = y(t) as follows: 

 

...)(
2

1 2

2

2

++= t
dt

yd
t

dt

dy
y  

 

If Δt is small, higher order terms (involving Δt raised to powers 2 or greater) are negligible 

compared to terms just involving Δt. So we have the following approximation when Δt is small: 

 

∆𝑦 =
𝑑𝑦

𝑑𝑡
∆𝑡. 

 

Taylor Series and the Differential Notation 

 We can also be express our Taylor series approximation using differential notation: 

 

𝑑𝑦 =
𝑑𝑦

𝑑𝑡
𝑑𝑡. 

 

In particular, when evaluating integrals, terms involving Δt raised to powers 2 or larger can be 

dropped. Thus, for example: 

 

𝑦(𝑇) − 𝑦(0) = ∫ 𝑑𝑦(𝑡) =

𝑇

0

∫
𝑑𝑦

𝑑𝑡

𝑇

0

𝑑𝑡. 

 

In this chapter, we will use the delta (Δ) notation when we are conducting Taylor series 

expansions to estimate changes in function. We will use the differential (d) notation for the case 

when we have dropped higher order terms. 

 

Taylor Series and Two Independent Variables 

Now, suppose that y = y(x, t); that is, y is a function of the independent variables x and t. 

The Taylor series expansion can be generalized to two independent variables as follows: 

 

 ...)(
2

1
)(

2

1
)(

2

1 2
2

2

2
2

2

2

+



+




+




+




+




= tx

tx

y
t

t

y
x

x

y
t

t

y
x

x

y
y  

 

If x = x(t) is a differentiable function of time t, then we have the approximation Δx = x’(t)Δt.  

Ignoring higher order terms in Δt, we obtain: 

 

𝑑𝑦 =
𝜕𝑦

𝜕𝑥
𝑥′(𝑡)𝑑𝑡 +

𝜕𝑦

𝜕𝑡
𝑑𝑡 , 

 

where we have expressed the result in differential form. This implies that 
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𝑦(𝑇) − 𝑦(0) = ∫ 𝑑𝑦(𝑡) =

𝑇

0

∫ (
𝜕𝑦

𝜕𝑡

𝑇

0

𝑥′(𝑡) +
𝜕𝑦

𝜕𝑡
) 𝑑𝑡. 

 

Note that for purposes of economy of notation we denoted y(t) = y(x(t),t). 

 

C. Itô's Lemma 

 Itô's Lemma is often regarded to be the Fundamental Theorem of Stochastic Calculus. 

Brownian motion processes are fractals that do not smooth as Δt → 0. Newtonian calculus, 

which requires smoothing, cannot be used to differentiate or antidifferentiate Brownian motion 

functions. Hence, we will rely on Itô's Lemma to analyze continuous-time stochastic processes. 

 

The Itô Process 

First, we will consider an Itô process, which is a stochastic process Xt that can be 

expressed as follows: 

 

.),(),( tttt dZtXbdttXadX +=  

 

The drift of the process is a, while b2 is the instantaneous variance and dZt is a standard 

Brownian motion process. Taking Δt to be a small change in time and expressing a = a(Xt, t) and 

b = b(Xt, t) in order to economize the notation, we can write: 

 

∆𝑋𝑡 = 𝑎∆𝑡 + 𝑏∆𝑍𝑡, 
 

where random variable ∆𝑍𝑡 ~ N(0,t). 

 Now, suppose that y = y(x, t) is an infinitely differentiable function with respect to the 

real variables x and t. Now, replace x with Xt (a stochastic process) so that y = y(Xt, t). Thus, y 

itself becomes a stochastic process, since it is a function of a stochastic process Xt and time t. 

The Taylor series expansion above can be used to estimate Δy, the change in y, resulting from a 

change Δt in time:   

 

∆𝑦(𝑋𝑡, 𝑡) =
𝜕𝑦

𝜕𝑡
∆𝑡 +

𝜕𝑦

𝜕𝑥 

(𝑎∆𝑡 + 𝑏∆𝑍𝑡) +
1

2
∙

 𝜕2𝑦

𝜕𝑥 
2

(𝑎∆𝑡 + 𝑏∆𝑍𝑡)2 +
1

2
∙

 𝜕2𝑦

𝜕𝑡 
2

(∆𝑡)2 +
1

2

∙
 𝜕2𝑦

𝜕𝑥 𝜕𝑡
(𝑎∆𝑡 + 𝑏∆𝑍𝑡)∆𝑡 + ⋯  

 

=
𝜕𝑦

𝜕𝑡
∆𝑡 +

𝜕𝑦

𝜕𝑥 

(𝑎∆𝑡 + 𝑏∆𝑍𝑡) +
1

2
∙

 𝜕2𝑦

𝜕𝑥 
2

[𝑎2(∆𝑡)2 + 2𝑎𝑏∆𝑡∆𝑍𝑡 + 𝑏2(∆𝑍𝑡)2] +
1

2
∙

 𝜕2𝑦

𝜕𝑡 
2

(∆𝑡)2

+
1

2
∙

 𝜕2𝑦

𝜕𝑥 𝜕𝑡
[𝑎(∆𝑡)2 + 𝑏∆𝑍𝑡∆𝑡] + ⋯  

 

In the expansion above, we also economized the notation for the various partial derivatives 

evaluated at (x,t)=(Xt,t) by denoting: 
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𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑥
(𝑋𝑡, 𝑡),

𝜕𝑦

𝜕𝑥
=  

𝜕𝑦

𝜕𝑡
(𝑋𝑡, 𝑡),

𝜕2𝑦

𝜕𝑥2
=

𝜕2𝑦

𝜕𝑥2
(𝑋𝑡, 𝑡),

𝜕2𝑦

𝜕𝑡2
=

𝜕2𝑦

𝜕𝑡2
(𝑋𝑡, 𝑡),

𝜕2𝑦

𝜕𝑥𝜕𝑡
=  

𝜕2𝑦

𝜕𝑥𝜕𝑡
(𝑋𝑡, 𝑡). 

 

When estimating Δy using the Taylor series expansion, all terms that are negligible 

compared to Δt as Δt approaches 0 can be dropped. Since (Zt+Δt - Zt) ~ Z √∆𝑡 with Z ∼ N(0,1), 
the terms involving (Δt)2, ΔtΔZt, and higher order terms can all be dropped. Our expansion 
simplifies to: 
 

(12)                            ∆𝑦 =
𝜕𝑦

𝜕𝑡
∆𝑡 +

𝜕𝑦

𝜕𝑋𝑡
(𝑎∆𝑡 + 𝑏∆𝑍𝑡) +

𝑏2

2
∙

 𝜕2𝑦

𝜕𝑋𝑡
2 (∆𝑍𝑡)2.         

 

Since (ΔZt)
2 ~ Z2Δt, this term is not negligible. We now state a remarkable fact. We can 

actually replace (ΔZt)
2 with Δt, where the random variable has seemingly disappeared. To show 

this, we will make use of the fact that Brownian motion increments are independent for disjoint 

intervals. 

 

Demonstration that Δt can replace (ΔZt)
2  in the differential y  

We begin by subdividing the interval [t, t + Δt] into n smaller subintervals [t +(i-1)Δt/n, t 

+ iΔt/n] for i = 1, 2, …n. This means that the width of each subinterval equals Δt/n. In the Taylor 

series expansion above of Δy, the subintervals lead to (ΔZt)
2 being replaced by ∑ (∆𝑖𝑍𝑡)𝑛

𝑖=1
2
 with 

 

 ∆𝑖𝑍𝑡 = 𝑍
𝑡+

𝑖∆𝑡
𝑛

 −  𝑍
𝑡+

(𝑖−1)∆𝑡
𝑛

. 

 

Since  

 

∆𝑖𝑍𝑡 = 𝑍
𝑡+

𝑖∆𝑡

𝑛

 −  𝑍
𝑡+

(𝑖−1)∆𝑡

𝑛

∼ 𝑁 (0,
∆𝑡

𝑛
), 

 

the variance of the random variable ΔiZt is: 

 

𝐸[(∆𝑖𝑍𝑡)2] = 𝑉𝑎𝑟(∆𝑖𝑍𝑡) =
∆𝑡

𝑛
. 

 

Notice that this result gives us the expected value of the random variable (∆𝑖𝑍𝑡)2. Next 

we calculate the variance of (∆𝑖𝑍𝑡)2. From the second equation above, we see that 

 

   ∆𝑖𝑍𝑡 ∼ 𝑍√
∆𝑡

𝑛
, 

 

with Z ∼ N(0,1), which implies 

 

(∆𝑖𝑍𝑡)2 ∼ 𝑍2 ∆𝑡

𝑛
. 

 

The solution to end-of-chapter exercise 10 verifies that Var (Z2c) = 2c2 for any c >0. By 

the last equation above and the fact that Var(Z2c) = 2c2, we obtain: 
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𝑉𝑎𝑟[(∆𝑖𝑍𝑡)2] =
2(∆𝑡)2

𝑛2
.  

   
The Brownian motion increments ΔiZt are independent random variables since the corresponding 

time intervals are disjoint. Since the variance of a sum of independent random variables is the 

sum of each of their variances, then: 

 

𝑉𝑎𝑟 (∑(∆𝑖𝑍𝑡)2

𝑛

𝑖=1

 

) = ∑ 𝑉𝑎𝑟 ( (∆𝑖𝑍𝑡)2) = ∑
2(∆𝑡)2

𝑛2

𝑛

𝑖=1

𝑛

𝑖=1

=
2(∆𝑡)2

𝑛
. 

 

Since we showed above that 𝐸[(∆𝑖𝑍𝑡)2] =
∆𝑡

𝑛
, we see that  

 

 𝐸 [∑(∆𝑖𝑍𝑡)2

𝑛

𝑖=1

 

] =
∆𝑡

𝑛
𝑛 = ∆𝑡. 

 

Thus, the quantity ∑ (∆𝑖𝑍𝑡)2𝑛
𝑖=1

 
 has an expected value of Δt and a variance 2(Δt)2/n that 

approaches 0 as n approaches infinity. Since (ΔZt)
2 must approach ∑ (∆𝑖𝑍𝑡)2𝑛

𝑖=1  as n→∞ and as 

Δt gets arbitrarily small, this implies that (ΔZt)
2 has an expected value of Δt and a variance 

approaching 2(Δt)2/n→0. But a random variable with variance 0 is simply equal to its expected 

value. So, we conclude that (ΔZt)
2 = Δt.    

 

Itô's formula 

 Equation (12) above simplifies to: 

 

∆𝑦 = (
𝜕𝑦

𝜕𝑡
+ 𝑎

𝜕𝑦

𝜕𝑥 
+

1

2
𝑏2  𝜕2𝑦

𝜕𝑥 
2 ) ∆𝑡 + 𝑏

𝜕𝑦

𝜕𝑥 
∆𝑍𝑡. 

 

We can express this result which becomes Itô's formula in differential form: 

 

𝑑𝑦(𝑋𝑡, 𝑡) = (
𝜕𝑦

𝜕𝑡
+ 𝑎

𝜕𝑦

𝜕𝑥 
+

1

2
𝑏2

 𝜕2𝑦

𝜕𝑥 
2

) 𝑑𝑡 + 𝑏
𝜕𝑦

𝜕𝑥 
𝑑𝑍𝑡 . 

 

where the partial derivatives are evaluated at (x,t) = (Xt,t). 

 

Itô's Lemma 

 The differential that we obtained above is the stochastic calculus version of the 

differential from ordinary calculus. This result is known as Itô's Lemma: 

 

Given a real-valued function: y = y(x,t), define the stochastic process y(Xt,t),where 

Xt is an Itô process dXt = a(Xt,t)dt + b(Xt,t)dZt with Zt denoting standard 

Brownian motion. By Itô's formula, the differential of the process y(Xt,t) satisfies 

the equation: 
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𝑑𝑦(𝑋𝑡, 𝑡) = [𝑎
𝜕𝑦

𝜕𝑥
+

𝜕𝑦

𝜕𝑡
+

1

2
𝑏2

𝜕2𝑦

𝜕𝑥2
] 𝑑𝑡 + 𝑏

𝜕𝑦

𝜕𝑥
𝑑𝑍𝑡 

 

where the partial derivatives above are evaluated at (x,t) = (Xt,t). 

 

Applying Itô's Lemma 

 Evaluating stochastic integrals is generally trickier than evaluating ordinary real valued 

integrals. I recommend the following 3-step process to evaluate stochastic integrals: 

 

1. As a first attempt, apply the form of the solution that mimics the solution for the 

analogous problem in ordinary calculus.  

2. Invoke Itô's Lemma to find the differential of the attempted solution.  

3. Integrate both sides of the differential and rearrange the result to solve for the desired 

stochastic integral. 

 

Illustration: Applying Itô's Lemma 

 Suppose that we seek to evaluate ∫ 𝑍𝑡𝑑𝑍𝑡
𝑇

0
. Using the 3-step technique described above, 

we evaluate ∫ 𝑍𝑡𝑑𝑍𝑡
𝑇

0
 as follows: 

 

1. Attempt the ordinary calculus solution which would suggest that YT = ∫ 𝑍𝑡𝑑𝑍𝑡
𝑇

0
=

1

2
𝑍𝑇

2. 

2. Find the differential of our attempted solution 𝑌𝑇 =  
1

2
𝑍𝑇

2 using Itô's Lemma. Choose 

y(x,t) = 
1

2
x2 so that Yt = y(Zt,t) = 

1

2
𝑍𝑡

2. With dXt = dZt = 0·dt+1·dZt, and invoking Itô's 

Lemma, we have:  

 

𝑑𝑌𝑡 = 𝑑𝑦(𝑍𝑡, 𝑡) = [0 ∙
𝜕𝑦

𝜕𝑥
+

𝜕𝑦

𝜕𝑡
+

1

2
∙ 12 ∙

𝜕2𝑦

𝜕𝑥2
] 𝑑𝑡 + 1 ∙

𝜕𝑦

𝜕𝑥
𝑑𝑍𝑡 

=
𝜕𝑦

𝜕𝑥
𝑑𝑍𝑡 +

𝜕𝑦

𝜕𝑡
𝑑𝑡 +

1

2

𝜕2𝑦

𝜕𝑥2 𝑑𝑡. 

 

In Itô's Lemma, we  must evaluate the partial derivatives at (x,t) = (Zt,t). Since 
𝜕𝑦

𝜕𝑥
 =

𝑥|𝑥=𝑍𝑡
 = Zt, 

𝜕𝑦

𝜕𝑥
 = 0 and 

𝜕2𝑦

𝜕𝑥2 = 1, we have: 

 

𝑑𝑌𝑡 = 𝑍𝑡𝑑𝑍𝑡 +
1

2
𝑑𝑡. 

 

3. We will integrate both sides of this equation for 0 ≤ t ≤ T. The left side of the following 

equation is based on our discussion concerning the integral of a stochastic differential at 

the start of Section 6.1.3. The right side of the following is based on the equation 

immediately above: 

                    𝑌𝑇 − 𝑌0 = ∫ 𝑑𝑌𝑡
𝑇

0
= ∫ 𝑍𝑡𝑑𝑍𝑡

𝑇

0
+ ∫

1

2
𝑑𝑡

𝑇

0
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1

2
(𝑍𝑇)2 −

1

2
(𝑍0)2 = ∫ 𝑍𝑡𝑑𝑍𝑡

𝑇

0

+ ∫
1

2
𝑑𝑡

𝑇

0

. 

1

2
(𝑍𝑇)2 = ∫ 𝑍𝑡𝑑𝑍𝑡

𝑇

0

+
1

2
𝑇. 

 

 Solving for the desired integral results in 

 

∫ 𝑍𝑡𝑑𝑍𝑡

𝑇

0

=
1

2
(𝑍𝑇)2 −

1

2
𝑇. 

 

Note that the result is a stochastic process. Also, observe that 

 

𝐸 [
1

2
(𝑍𝑇)2 −

1

2
𝑇] =

1

2
𝑉𝑎𝑟[𝑍𝑇] −

1

2
𝑇 = 0 

 

which gives the correct expectation, and clearly, Var[ZT] = T.  

 Intuitively, the reason why the Brownian motion integral and ordinary calculus integral 

result in different forms of solutions is because x(t) is a continuously differentiable function 

while Zt is not differentiable. More precisely, dx(t) = x’(t)dt and (dx(t))2 = (x’(t))2(dt)2, while dZt 

has standard deviation equal to √𝑑𝑡 and (dZt)
2 =dt. This means that the second-order term in the 

Taylor expansion of 𝑑 [
1

2
𝑍𝑡

2] becomes important since (dZt)
2 = dt. In ordinary calculus, only the 

first-order term in the Taylor expansion of 𝑑 [
1

2
(𝑥(𝑡))

2
]  is important since (dx(t))2 = (x’(t))2(dt)2 

and (dt)2 is negligible insofar as integration is concerned. 

 

Application: Geometric Brownian Motion 

 Geometric Brownian motion is an essential model for characterizing the stochastic 

process for a security with value St at time t: 

 

(13)     𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑍𝑡 . 
 

Recall that μ and σ are the geometric mean security return and the standard deviation of the 

security return per unit of time. We wish to determine the value of the security St as a function of 

time. First, rewrite the differential above in the form: 

 

(14)     
𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑍𝑡. 

 

 The reason why this model is used extensively to model security prices St is that the 

instantaneous return on the security over the time interval [t,t+dt] is the known drift μdt plus a 

random Brownian motion compoment σdZt. The drift is related to the time value of money and 

the Brownian motion term reflects the unknowable random factors affecting the security's price. 

Since Brownian motion has a normal distribution, we are, of course, assuming a particular type 
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of random fluctuation. It is a subject of much debate in finance as to the merits of this choice to 

model securities. 

Next, we will integrate both sides of equation (14) from 0 to T. To evaluate the integral of 

the left side, use our 3 step procedure involving Itô’s Lemma. Step 1 is to evaluate the integral as 

though St is a real-valued function: 

 

∫
𝑑𝑆𝑡

𝑆𝑡

𝑇

0

= ln(𝑆𝑡) |
T
 
0

= ln(𝑆𝑇) − ln(𝑆0). 

 

Since lnS0 is a constant, we can ignore it for purposes of computing the differential of the right 

side function lnSt – lnS0. Step 2 is to take the differential of lnSt using Itô’s Lemma applying it to 

the function y = y(St,t) = lnSt. In this formulation, dy from Itô's formula is d(lnSt), a is µSt and b is 

St. We substitute these values into Itô's formula as follows: 

 

ttttt dZ
S

y
Sdt

S

y
S

t

y

S

y
SSlnd




+












+




+




= 

2

2
22

2

1
)(

 
 

Following standard rules for differentiation, the above equation is written: 

 

t

t

t

t

t

t

tt dZ
S

Sdt
S

S
S

SSd
11

2

1
0

1
)(ln

2

22  +







−+=

,

 

 

which simplifies to: 

                                                      tt dZdtSd  +







−= 2

2

1
)ln(  

 

 This equation would be the basis of a Monte Carlo simulation of geometric Brownian 

motion for stock price behavior should we wish to run one. Now, perform Step 3 by integrating 

both sides of this equation from t = 0 to t = T, which results in: 

 

∫ 𝑑 ln(𝑆𝑡)

𝑇

0

= ∫ [(𝜇 −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝑍𝑡]

𝑇

0

 

ln (𝑆𝑡) |
𝑇
 
0

= (𝜇 −
1

2
𝜎2) 𝑡 + 𝜎𝑍𝑡 |

𝑇
 
0

 

 

𝑙𝑛𝑆𝑇 − 𝑙𝑛𝑆0 = 𝑙𝑛
𝑆𝑇

𝑆0
= (𝜇 −

1

2
𝜎2) 𝑇 + 𝜎𝑍𝑇 . 

 

Exponentiating both sides of this equation and multiplying by S0 yields: 
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(15)     𝑆𝑇 = 𝑆0𝑒
(𝜇−

1

2
𝜎2)𝑇+𝜎𝑍𝑇 . 

 

 Notice that in the exponent of e, there is an extra factor of -σ2/2 that would not appear in 

the solution to the classic problem dSt = μdt. As we discussed in Chapter 4, the classic problem 

has the solution 𝑆𝑇 = 𝑆0𝑒𝜇𝑇 .  Itô's formula shows that the effect of the Brownian motion term 

results in this increment to drift equal to -σ2/2 in the solution for ST. Also recall that the above 

solution was used to obtain the heuristic probabilistic derivation of the price of a European call 

option (Chapter 5), except that μ was replaced with the return r on a riskless bond. Next, we 

calculate the expected value of the logarithmic return: 

 

(16)    𝐸 [𝑙𝑛
𝑆𝑇

𝑆0
] = 𝐸 [(𝜇 −

1

2
𝜎2) 𝑇 + 𝜎𝑍𝑇] = (𝜇 −

1

2
𝜎2) 𝑇 + 𝜎𝐸[𝑍𝑇] = (𝜇 −

1

2
𝜎2) 𝑇 = 𝛼𝑇. 

 
Returns and Price Relatives 

 The constant α = μ - σ2/2 is known as the mean logarithmic return of the security per unit 

time. If we express the security price in the form: 

 

(17)    𝑆𝑇 = 𝑆0𝑒𝛼𝑇+𝜎𝑍𝑇 , 
 

then ln(ST/S0)=αT+σZT is known as the log of price relative or the logarithmic return. It is also 

useful to calculate the variance of the logarithmic return. 

 

(18)     𝑉𝑎𝑟 (𝑙𝑛
𝑆𝑇

𝑆0
) = 𝐸 [(𝑙𝑛

𝑆𝑇

𝑆0
− 𝛼𝑇)2] = 𝐸[𝜎2𝑍𝑇

2] = 𝜎2𝐸[𝑍𝑇
2] = 𝜎2𝑇. 

 
In comparison, let’s examine the expected value and variance of the arithmetic return on ST 

over time T. The arithmetic return over time T is defined as r =ST/S0 – 1. To derive expected 

arithmetic return over time T, we first observe that E[αT + σZT]= αT and Var[αT + σZT] = 

E[σ2(ZT)2] = σ2T. Since αT + σZT ~ N(αT,σ2T), we have: 

 

(19)       𝐸[𝑟] = 𝐸[𝑒𝛼𝑇+𝜎𝑍𝑇 − 1] = 𝑒𝛼𝑇 + 
1

2
𝜎2𝑇 − 1.   

 
 
 We leave it as end-of-chapter Exercise 18 to verify that the variance of the 
arithmetic return is: 
 

(20)    𝑉𝑎𝑟[𝑟] = (𝑒𝜎2𝑇 − 1)𝑒2𝛼𝑇+𝜎2𝑇 . 

 
Because of the exponential nature of the arithmetic return in contrast to the linear nature 
of the logarithmic return, the expected value and variance of the arithmetic return grows 
exponentially with time T, while the expected value and variance of the logarithmic return 
grows linearly with time T.  
 
 Itô’s Formula: Numerical Illustration 
 Suppose, for example, that the following Itô process describes the price path St of a given 

stock: 
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tttt dZSdtSdS 015.01. +=  

 

The differential for this process describes the infinitesimal change in the price of the stock. The 

expected rate of return per unit time is .01 and the standard deviation of the return per unit time 

is .015. The solution for this equation giving the actual price level at a point in time is given by:  

 














+














−

=
tZT

T eSS
015.

2

015.
01.

0

2

 

                                                                       

 Suppose that one needed a return (or, log of price relative) and variance over time T for 

the stock. The expected value and variance of the log of price relative are given by: 

 

0098875.1
2

015.
01.

2

1
ln

2
2

0

=







−=−==








TTT

S

S
E T   

 

000225.1015.ln 22

0

===







T

S

S
Var T   

 

The expected value and variance of the arithmetic return over a single period are given by: 

 

𝐸[𝑟] = 𝑒𝛼𝑇+
1
2

𝜎2𝑇 − 1 = 𝑒(.0098875×1+
1
2

.0152×1) − 1 = .01005 

and 

 

𝑉𝑎𝑟[𝑟] = (𝑒𝜎2𝑇 − 1)𝑒2𝛼𝑇+𝜎2𝑇 = (𝑒 .0152×1 − 1)𝑒(2×.0098875×1+.0152×1) = .00022957. 
 

Figure 1 depicts a simulated geometric Wiener process over length of time 10,000, with 

S0 = 100, μ = .00001 and σ = .001. This diagram was obtained from a simulation of a random 

process with 10,000 data points. 
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Figure 1: Geometric Brownian Motion: S0 = 100,  = .00001,  = .001, n = 10,000 
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Exercises 

 

1.  Find the differential of the stochastic process Xt = t2Zt. 

 

2.  Find the differential of the stochastic process Xt = .06t + 100 + .02Zt. 

 

3.  Consider the following functions of a real-valued variable and of a stochastic process. 

Evaluate each and then contrast them: 

      a. ∫ 5d𝑋s
t

0
 if Xt = t2. 

      b.  ∫ 5dZs
t

0
 if Zs is Brownian motion. 

 

4.  Suppose that Xt and Yt are stochastic processes and C and D are real numbers. Verify that 

∫ (𝐶𝑑𝑋𝑡 + 𝐷𝑑𝑌𝑡) = 𝐶(𝑋𝑏 − 𝑋𝑎

𝑏

𝑎

) + 𝐷(𝑌𝑏 − 𝑌𝑎). 

 

5.  Suppose that St-1 = 0 and that potential outcomes St for a one time-period submartingale 

process are +1 with probability .6 and -1 with probability .4.  

   a.  Compute the expected value 𝐸 [𝑆𝑡|𝑆𝑡−1] of this process. 

   b.  Is the process in this problem a martingale? 

   c.  Compute the drift of the process. 

 

6.  Consider a one time period, two potential outcome framework where there exists Company Q 

stock currently selling for $50 per share and a riskless $100 face value T-Bill currently selling 

for $80. Suppose Company Q faces uncertainty, in that it will pay its owner either $30 or $70 in 

one year. Further assume that the physical probability that the stock price will drop is .2. 

    a. List the risk neutral probabilities for this payoff space. 

    b. Value call and put options on this stock, with exercise prices equal to X = $60. 

    c. Does put-call parity hold for this example? 

 

7.  Rollins Company stock currently sells for $12 per share and is expected to be worth either 

$10 or $16 in one year. The current riskless return rate is .125 and the physical probability that 

the stock price will increase is .75. List the risk neutral probabilities for this payoff space. 

 

8.  Suppose that we pay S0 = .7 to purchase a security, with potential payoffs given as follows: S1 

= 2, S2 = 1 and S3 = 0 such that under physical probabilities,  𝐸ℙ[𝑆] =  .8 and a variance equals 

𝐸ℙ[𝑆 − 𝐸ℙ[𝑆]]
2

= .76. Find the risk-neutral probabilities in measure ℚ based on the market 

price of the stock. 

 

9.  Suppose that we have a random variable X ~ N(, 1). 

   a.  Write the density function fℙ(x) under probability measure ℙ. 

   b.  Suppose that we change the probability measure of X to measure ℚ, which is an equivalent 
martingale measure to ℙ. Write the density function f ℚ(x) under probability measure ℚ. 

 

10.  In the text, we made the claim that the variance of the random variable Z2c where Z∼N(0,1) 

and c > 0 equals 2c2. 
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     a.  First, show that the variance of the random variable Z2 where Z∼N(0,1) equals 2. 

     b.  Use the result of part a to show that the variance of the random variable Z2c where 

Z∼N(0,1) and c > 0 equals 2c2. 

11.  Suppose a stock price St evolves according to 𝑑𝑆𝑡 = 𝑡𝑑𝑡 + 𝜎𝑑𝑍𝑡 where Zt is standard 

Brownian motion, σ > 0 is a constant, and S0 is the initial price of the stock.  Derive an equation 

to find the price of the stock at time T. 

 

12.   Suppose that the logarithmic return α on a stock follows a Wiener process (Brownian 

motion process) with drift, an expected value over one year equal to 5% and a variance equal to 

.09; that is, α ~ N(µ,σ2) with µ = .05 and σ2 = .09. Find the expected value and variance of the 

arithmetic return for the stock. 

 

13.  Suppose that the log of price relatives (instantaneous returns) for a stock follows a Wiener 

process with drift, an expected value equal to 6% per annum and a variance equal to .08 per 

annum. What are the expected value and variance of the arithmetic return r for the stock over one 

year? 

 

14.  Suppose that the following Itô process describes the price of a given stock after t weeks: 

tttt dZSdtSdS 02.001. +=  

      a. What is the solution to this stochastic differential equation? 

      b. Suppose that there are 52 periods in a year. What are the expected value and variance of 

the log of price relative for this stock over a 52-week period? 

 

15.  Suppose that Xt is a geometric Brownian motion process with tttt dZXdtXdX  += . 

Consider a function Yt of Xt with Yt =(Xt)
n. Derive an expression for dYt. 

 

16.  Suppose that a particular derivative instrument with price St satisfies the differential dSt = 

μ(M – St)dt + σ(M – St)dZt and initial value S0 with 0 < S0 < M. Find the solution for St  that is 

valid as long as 0 < St < M.  

 

17.  Suppose that a stock price St satisfies the model 𝑑𝑆𝑡 = 𝜇𝑑𝑡 + 𝑍𝑡𝑑𝑍𝑡 where Zt is standard 

Brownian motion, μ > 0 is a constant, and S0 is the initial price of the stock. Derive an expression 

to price the stock at time t. 

 

18. Derive the variance formula given by equation (20) in Section C for the arithmetic return of a 

security that follows a geometric Brownian motion of the form 𝑆𝑇 = 𝑆0𝑒𝛼𝑇+𝜎𝑍𝑇 . 
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Solutions 

 

1. By the product rule, dXt = t2dZt +Ztd(t2) = t2dZt +2tZtdt. 

 

2.  By linearity: dXt = .06dt + .02dZt. 

 

3.a. ∫ 5dXs
t

0
= 5Xs|0

t = 5s2|0
t = 5(t)2 − 5(0)2 = 5t2. 

      b. ∫ 5dZs = 5Zs|0
tt

0
= 5Zt − 5Z0 = 5Zt. 

The solution for part a is a real-valued function of time. The solution for part b is the stochastic 

process 5 times standard Brownian motion.  

 

4.   Using the linearity property followed by the integral of a stochastic differential property in 

Section 6.1.3, we obtain: 

∫(𝐶𝑑𝑋𝑡 + 𝐷𝑑𝑌𝑡)

𝑏

𝑎

= 𝐶 ∫ 𝑑𝑋𝑡

𝑏

𝑎

+ 𝐷 ∫ 𝑑𝑌𝑡

𝑏

𝑎

= 𝐶(𝑋𝑏 − 𝑋𝑎) + 𝐷(𝑌𝑏 − 𝑌𝑎). 

 

5.a.  The expected value of the process given St-1 is computed as follows: 

𝐸 [𝑆𝑡|𝑆𝑡−1] = ∑ 𝑆𝑡,𝑖𝑝𝑖

𝑖

= (1 + 0)(. 6) + (−1 + 0)(.4) = 0.2 

   b.  No – since E[St|St-1]=.2 > 0=St-1, this process is a submartingale. 

   c.  The drift of this process is E[St|St-1]=.2. 

 

6.a.   Risk-neutral probabilities are computed as follows: 

[
30 70

100 100
] [

𝜓0,1,1

𝜓0,1,2
] = [

50
80

]  ;    
𝜓0,1,1 =  .15

𝜓0,1,2 =  .65
 

𝑞0,1,1/(𝜓0,1,1 + 𝜓0,1,2) =  .1875

𝑞0,1,2/(𝜓0,1,1 + 𝜓0,1,2) =  .8125
 

       b.  𝑐0 = (. 8 × .1875 × 0) + (. 8 × .8125 × $10) = 0 + $6.5 = $6.5 

            𝑝0 = (. 8 × .1875 × $30) + (. 8 × .8125 × 0) = $4.5 + 0 = $4.5 

       c.  Yes: $6.5 + (. 8 × $60) = $4.5 + $50 

 

7.    Risk-neutral probabilities are computed as follows: 

[
10 16

100 100
] [

𝜓0,1,1

𝜓0,1,2
] = [

12
88.888889

]  ;    
𝜓0,1,1 =  .37037

𝜓0,1,2 =  .51852
 

𝑞0,1,1/(𝜓0,1,1 + 𝜓0,1,2) =  .4166667

𝑞0,1,2/(𝜓0,1,1 + 𝜓0,1,2) =  .5833333
 

 

8. Consider the following statements, which state that the risk-neutral probabilities need to sum 

to one, the expected value of the ℚ distribution must equal S0 = .7  (ℚ is an equivalent martingale 

measure to ℙ) and the variance of both must be equal .76: 

∑ 𝑞𝑖

𝑖

 =  𝑞1 + 𝑞2 + 𝑞3 =  1 
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∑ 𝑆𝑖𝑞𝑖

𝑖

 =  2𝑞1 + 1𝑞2  + 0𝑞3 = 𝐸ℚ[𝑆] =  .7 

𝐸ℚ [𝑆 − 𝐸ℚ[𝑆]]
2

= ∑ [𝑆𝑖 − 𝐸ℚ[𝑆]]
2

𝑞𝑖

𝑖

  =  (2 − .7)2𝑞1 + (1 − .7)2𝑞2 + (0 − .7)2𝑞3  

=  .76 

We solve this system simultaneously as follows: 

[
1 1 1
2 1 0

1.69 . 09 . 49
] [

𝑞1

𝑞2

𝑞3

] = [
1
. 7

. 76
] 

[
−.245 . 2 . 5

. 49 . 6 −1
. 755 −.8 . 5

] [
1
. 7

. 76
] = [

𝑞1

𝑞2

𝑞3

] = [
. 275
. 15

. 575
] 

 

Similarly, one finds the physical probabilities by solving the system: 

[
1 1 1
2 1 0

1.44 . 04 . 64
] [

𝑝1

𝑝2

𝑝3

] = [
1
. 8

. 76
], 

and one obtains: p1=.3, p2=.2, and p3=.5. 

 

9.     a.   𝑓ℙ(𝑥) =
1

√2𝜋
𝑒−

1

2
(𝑥−)2

 

        b.  𝑓ℚ(𝑥) =
1

√2𝜋
𝑒−

1

2
𝑥2

 

 

10. a.  First note that E[Z2 ] = Var[Z] = 1. Thus: 

𝑉𝑎𝑟(𝑍2) =
1

√2𝜋
∫(𝑧2 − 1)2

∞

−∞

𝑒−𝑧2/2𝑑𝑧 =
1

√2𝜋
∫(𝑧4 − 2𝑧2 + 1)

∞

−∞

𝑒−𝑧2/2𝑑𝑧 

We already know that  

1

√2𝜋
∫  

∞

−∞

𝑒−𝑧2/2𝑑𝑧 = 1 𝑎𝑛𝑑  𝑉𝑎𝑟(𝑍) =
1

√2𝜋
∫ 𝑧2

∞

−∞

𝑒−𝑧2/2𝑑𝑧 = 1.  

So there is left to evaluate 

1

√2𝜋
∫ 𝑧4

∞

−∞

𝑒−𝑧2/2𝑑𝑧 =
1

√2𝜋
∫ 𝑧3

∞

−∞

𝑒−𝑧2/2𝑧𝑑𝑧. 

Choose u = z3 and 𝑑𝑣 = 𝑒−𝑧2/2𝑧𝑑𝑧 and integrate by parts. Since du =3z2dz and 𝑣 =

−𝑒−
𝑧2

2 , then 

1

√2𝜋
∫ 𝑧3

∞

−∞

𝑒−𝑧2/2𝑧𝑑𝑧 = −
1

√2𝜋
𝑧3𝑒−

𝑧2

2 |−∞
∞ +

3

√2𝜋
∫ 𝑧2

∞

−∞

𝑒−
𝑧2

2 𝑑𝑧 = 3𝑉𝑎𝑟(𝑍) = 3 

This gives  

𝑉𝑎𝑟(𝑍2) = 3 − 2 + 1 = 2. 
b. First note that E[Z2c]=c. It is now straightforward to calculate Var[Z2c]: 

 

Var[Z2c]=E[(Z2c – c)2]=c2E[(Z2-1)2]=c2Var[Z2]=2c2. 
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11.  We solve 𝑑𝑆𝑡 = 𝑡𝑑𝑡 + 𝜎𝑑𝑍𝑡 as follows: 

∫ 𝑑𝑆𝑡

𝑇

0

= ∫ 𝑡𝑑𝑡

𝑇

0

+ 𝜎 ∫ 𝑑𝑍𝑡

𝑇

0

 

𝑆𝑇 − 𝑆0 =
1

2
𝑡2

 
|0

𝑇 + 𝜎𝑍𝑡|0
𝑇 

 

𝑆𝑇 − 𝑆0 =
1

2
𝑇2 −

1

2
02 + 𝜎𝑍𝑇 − 𝜎 × 0. 

𝑆𝑇 − 𝑆0 =
1

2
𝑇2 + 𝜎𝑍𝑇 . 

𝑆𝑇 = 𝑆0 +
1

2
𝑇2 + 𝜎𝑍𝑇 . 

 

12.  The mean and variance of arithmetic returns are computed as follows: 

 

  09966.111 045.05.2

1 2

=−=−=







−= +

+

ee
S

S
ErE

TT

o

T


 

                             ( ) ( ) 11388.11][ 09.05.209.2 22

=−=−= ++ eeeerVar TTT 
 

 

13.  The expected value and variance are computed as follows: 

  10517.111 04.06.2

1 2

=−=−=







−= +

+

ee
S

S
ErE

TT

o

T


 

( ) ( ) 1017.11][ 2..08.2 22

=−=−= + eeeerVar TTT 
 

 

14.   a.                                   𝑆𝑇 = 𝑆0𝑒
[(.001−

.022

2
)𝑇+.02𝑍𝑇]

= 𝑆0𝑒(.0008𝑇+.02𝑍𝑇) 

        b.                                     0416.52.
2

02.
001.ln

2

0

52 =
















−=









S

S
E  

                                                0208.5202.ln 22

0

52 ===







T

S

S
Var   

 

15.  Define y(x,t) = xn so that Yt = y(Xt,t). The partial derivatives of y evaluated at (x,t) = (Xt,t) are 

as follows: 

𝜕𝑦

𝜕𝑥
= 𝑛𝑋𝑡

𝑛−1;  
𝜕2𝑦

𝜕𝑥2
= (𝑛2 − 𝑛)𝑋𝑡

𝑛−2;   
𝜕𝑦

𝜕𝑡
= 0. 

   With a =μXt and b =σXt, we apply Itô’s Lemma and obtain: 

𝑑𝑌𝑡 = [𝜇𝑋𝑡𝑛𝑋𝑡
𝑛−1 +

1

2
𝜎2𝑋𝑡

2(𝑛2 − 𝑛)𝑋𝑡
𝑛−2] 𝑑𝑡 + 𝜎𝑋𝑡𝑛𝑋𝑡

𝑛−1𝑑𝑍𝑡  

= [𝑛𝜇 +
1

2
(𝑛2 − 𝑛)𝜎2] 𝑋𝑡

𝑛𝑑𝑡 + 𝑛𝜎𝑋𝑡
𝑛𝑑𝑍𝑡. 
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16.  First, divide both sides of the differential by M – St to obtain: 
𝑑𝑆𝑡

𝑀 − 𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑍𝑡 . 

Since the integral of dSt / (M – St) for real-valued functions St equals –ln(M – St), we will use the 

expression ln(M – St) to obtain the correct solution for the stochastic process St. Recall that Itô's 

formula is: 

tdZ
x

y
bdt

x

y
b

t

y

x

y
ady




+




+




+




= ]

2

1
[

2

2
2  

Define y(x,t)=ln(M-x) so that Yt=y(St,t). The partial derivatives of y evaluated at (x,t) = (St,t) are 

as follows: 

𝜕𝑦

𝜕𝑥
=

−1

𝑀 − 𝑆𝑡
;  

𝜕2𝑦

𝜕𝑥2
=

−1

(𝑀 − 𝑆𝑡)2
;   

𝜕𝑦

𝜕𝑡
= 0 

     We now use Itô’s Lemma, where a = 𝜇(𝑀 – 𝑆𝑡) and b = (𝑀 – 𝑆𝑡):  

𝑑(ln(𝑀 − 𝑆𝑡)) = 𝜇(𝑀 – 𝑆𝑡) (
−1

𝑀 − 𝑆𝑡
) 𝑑𝑡 + 0 +

1

2
𝜎2(𝑀 – 𝑆𝑡)2 (

−1

(𝑀 − 𝑆𝑡)2
) 𝑑𝑡 

+𝜎(𝑀 – 𝑆𝑡) (
−1

𝑀 − 𝑆𝑡
) 𝑑𝑍𝑡 

= −𝜇𝑑𝑡 −
1

2
𝜎2𝑑𝑡 − 𝜎𝑑𝑍𝑡 = − (𝜇 +

𝜎2

2
) 𝑑𝑡 − 𝜎𝑑𝑍𝑡. 

Changing the variable from t to s and integrating from 0 to t results in 

ln(𝑀 − 𝑆𝑡) − ln(𝑀 − 𝑆0) = − (𝜇 +
𝜎2

2
) 𝑡 − 𝜎𝑍𝑡 

or 

ln (
𝑀 − 𝑆𝑡

𝑀 − 𝑆0
) = − (𝜇 +

𝜎2

2
) 𝑡 − 𝜎𝑍𝑡 . 

Exponentiating we have: 

𝑀 − 𝑆𝑡

𝑀 − 𝑆0
= 𝑒

−(𝜇+
𝜎2

2
)𝑡−𝜎𝑍𝑡 . 

Solving for St gives: 

𝑆𝑡 = 𝑀 − (𝑀 − 𝑆0)𝑒
−(𝜇+

𝜎2

2
)𝑡−𝜎𝑍𝑡 . 

 

17.  Employ the 3-step technique for solving stochastic differential equations as follows: 

1. Attempt the ordinary calculus solution:  ∫ (𝜇𝑑𝑡 + 𝑍𝑡𝑑𝑍𝑡
𝑇

0
) = 𝜇𝑇 +

1

2
𝑍𝑇

2. 

2. Find the differential of 𝜇𝑇 +
1

2
𝑍𝑇

2 using Itô's Lemma. First, define the function 

F(x,t) = 𝜇𝑡 +
1

2
𝑥2, so that 𝐹(𝑍𝑡 , 𝑡) = 𝜇𝑡 +

1

2
𝑍𝑡

2. Invoking Itô's Lemma with a = 0 and b =1, we 

have: 

𝑑𝐹(𝑍𝑡, 𝑡) = (
𝜕𝐹

𝜕𝑡
+

1

2

𝜕2𝐹

𝜕𝑥2
) 𝑑𝑡 +

𝜕𝐹

𝜕𝑥
𝑑𝑍𝑡 = (𝜇 +

1

2
) 𝑑𝑡 + 𝑍𝑡𝑑𝑍𝑡 = 𝑑𝑆𝑡 +

1

2
𝑑𝑡. 

3. Integrating both sides of this equation yields: 

∫ 𝑑𝐹(𝑍𝑡, 𝑡) = ∫ 𝑑𝑆𝑡 +
1

2
∫ 𝑑𝑡

𝑇

0

𝑇

0

𝑇

0
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𝜇𝑇 +
1

2
𝑍𝑇

2 = 𝑆𝑇 − 𝑆0 +
1

2
𝑇 

 Solving for ST results in 𝑆𝑇 = 𝑆0 + (𝜇 −
1

2
) 𝑇 +

1

2
𝑍𝑇

2. 

 

18. We already derived the expected value of the arithmetic return r=ST/S0 -1 given by equation 

(19) in Section 6.5.5: 𝐸[𝑟] = 𝑒𝛼𝑇+
1

2
𝜎2𝑇 . The variance of r is then: 

𝑉𝑎𝑟[𝑟] = 𝐸 [((𝑒𝛼𝑇+𝜎𝑍𝑇 − 1) − (𝑒𝛼𝑇+
1
2

𝜎2𝑇 − 1))

2

] = 𝐸 [(𝑒𝛼𝑇+𝜎𝑍𝑇 − 𝑒𝛼𝑇+
1
2

𝜎2𝑇)
2

] 

= 𝑒2𝛼𝑇𝐸 [(𝑒𝜎𝑍𝑇 − 𝑒
1
2

𝜎2𝑇)
2

] = 𝑒2𝛼𝑇𝐸 [𝑒2𝜎𝑍𝑇 − 2𝑒𝜎𝑍𝑇+
1
2

𝜎2𝑇 + 𝑒𝜎2𝑇]. 

Since 2σZT ~ N(0,4σ2T) and σZT + σ2T/2 ~ N(σ2T/2,σ2T), using equation (26) in Section 2.6.4, we 

obtain: 

𝐸[𝑒2𝜎𝑍𝑇] = 𝑒2𝜎2𝑇 𝑎𝑛𝑑 𝐸 [𝑒𝜎𝑍𝑇+
1
2

𝜎2𝑇] = 𝑒𝜎2𝑇 . 

Substituting these results in the calculation of Var[r], we see that: 

𝑉𝑎𝑟[𝑟] = 𝑒2𝛼𝑇(𝑒2𝜎2𝑇 − 2𝑒𝜎2𝑇 + 𝑒𝜎2𝑇) = 𝑒2𝛼𝑇+𝜎2𝑇(𝑒𝜎2𝑇 − 1). 

 

 


