
Chapter 10: The Black-Scholes Model 
 

A.  Preliminaries 

 In Chapters 2, 3, 7 and 8 of this manuscript, we discussed several models for pricing 

options. The pure security methodologies in Chapters 2 and 3 are particularly instructive because 

they highlight the importance of no-arbitrage in option pricing. That is, physical probabilities are 

not needed when capital markets are complete and when the Equivalent Martingale can be 

applied. We continued this discussion into Chapter 8, where we discussed option pricing in 

binomial environments. The binomial model can be extended into a Black-Scholes continuous 

time environment with application of the Central Limit Theorem. In Chapter 7, paying only 

cursory attention to arbitrage and the importance of risk-neutral pricing, we heuristically derived 

the Black-Scholes model. In Chapter 9, we developed the mathematical methodology to 

rigorously derive from arbitrage-free perspectives the Black-Scholes model and many other 

models. We will apply this more rigorous methodology in this chapter. 

 Here, we will employ the analytical approach of Black and Scholes themselves, where 

the option value is the solution to the appropriate boundary value problem. We will discuss 

estimating unobservable underlying security volatility, an essential input of the model, the 

model’s sensitivities to its inputs and then a variety of applications and extensions of the model. 

 

Self-Financing Strategies and Portfolios 

 In this section, we are going to reintroduce the self-financing replicating portfolio and 

how to use it to price derivatives. We will assume a market consisting of a stock and a riskless 

bond that will be used to create the portfolio. For convenience, we will illustrate the concepts 

using a European call as our derivative, but the method will be the same for many types of 

derivatives. Let ct denote the price of the call at time t. Consider a portfolio (γs,t,, γb,t) combining 

γs,t shares of stock at a per share price St at time t and γb,t units of the riskless bond with a price 

per unit of Bt at time t. The value of the portfolio at time t is then: Vt = γs,t,St+γb,tBt. Assume 

thatwe purchase the call at time 0 and T is the call expiry and bond maturity date. On the expiry 

date, the value of the European call will be known: cT = max(0,ST - X), where X is the exercise 

price of the call. 

 We say that the portfolio (γs,t,, γb,t) is a self-financing replicating portfolio for the call if 

and only if the following two properties are satisfied: 

             
 I    𝑑𝑉𝑡 = 𝛾𝑠,𝑡𝑑𝑆𝑡 + 𝛾𝑏,𝑡𝑑𝐵𝑡, 

 

and    

  

 II      𝑐𝑇 = 𝛾𝑠,𝑇𝑆𝑇 + 𝛾𝑏,𝑇𝐵𝑇. 

 

 Property I is called the self-financing property. The interpretation of Property I is that 

during every infinitesimal time interval (t,t+dt) the change in the value of the portfolio is entirely 

due to the changes in the prices of the stock and bond. There is no net new investment in the 

portfolio. In other words, any infinitesimal purchases or sales of the stock and bond (dγs,t and 

dγb,t) will offset each other so that the change in the value of the portfolio is entirely due to the 

changes in the value of the securities themselves. Property II states that the expiry date T value 

of the replicating portfolio will equal the price of the call at expiry date T. We will also assume 



the absence of arbitrage opportunities.  

 We will create a self-financing portfolio, consisting of a single T-period call, the 

underlying stock, and a T-period riskless bond. We will see that this arbitrage portfolio will have 

zero net investment from time 0 to time T, and it will be shown that its value is always equal to 

0. This portfolio (-1, γs,t,, γb,t) will consist of a short position in a single call along with positions 

in γs,t shares of underlying stock and γb,t units of the riskless bond. We shall see soon that our 

short position in the call will be offset by a long position in the underlying stock (γs,t will be 

positive), and a short position in γb,t units of the riskless bond (γb,t will be negative). Denote the 

values at time t of each unit of the call, stock, and bond by ct (whose value is not yet known), St, 

and Bt, respectively. If Pt is the value of the portfolio, then 

 
(1)                                                                  𝑃𝑡 = −𝑐𝑡 + 𝛾𝑠,𝑡𝑆𝑡 + 𝛾𝑏,𝑡𝐵𝑡.     
 

 Assume that we purchase the call at time 0 and T is the expiry date. On the expiry date, 

the value of the call will be known and the bond will mature. For example, a European call will 

be worth cT = max(0,ST - X), where X is the exercise price of the call. For our portfolio, the 

number of shares γs,T of stock and the number of units of the bond γb,T will be chosen so that the 

portfolio's expiry date value will be PT: 

 

(2)     𝑃𝑇 = −𝑐𝑇 + 𝛾𝑠,𝑇𝑆𝑇 + 𝛾𝑏,𝑇𝐵𝑇 = 0.    
 

 We will also determine the values of γs,t and γb,t at every moment t so that during every 

infinitesimal time interval (t, t+dt) there is zero net new investment in the portfolio. In other 

words, any infinitesimal purchases or sales of the stock and bond (dγs,t and dγb,t) will offset each 

other so that the change in the value of the portfolio is entirely due to the changes in the value of 

the securities themselves. This can be expressed mathematically as: 

 

(3)     𝑑𝑃𝑡 = −𝑑𝑐𝑡 + 𝛾𝑠,𝑡𝑑𝑆𝑡 + 𝛾𝑏,𝑡𝑑𝐵𝑡 

 

for any time t,0 ≤ t ≤ T. In a no-arbitrage market, conditions suggested by equations (2) and (3) 

guarantee that the owner of the portfolio requires no capital at all to construct and maintain the 

portfolio. Such a portfolio is called a self-financing portfolio.1 In an arbitrage-free market, this 

implies that the value of the portfolio Pt equals zero for all time t, 0 ≤ t ≤ T. The reason is quite 

simple. Suppose at some point in time t the value of the portfolio was negative: Pt = -ct + γs,tSt + 

γb,tBt < 0. By equation (2), a long position in this portfolio would certainly produce a riskless 

profit by time T, since the portfolio is constructed to have zero value at time T. Since the 

portfolio's current price is negative, its purchase would produce a positive time t cash flow. Since 

the portfolio satisfies the condition given by equation (3), we would not need to use any capital 

to maintain the portfolio from time t until the option expiry date T. Assuming an interest rate r, a 

guaranteed profit of (γs,tSt+γb,tBt+ct)e
r(T-t) with interest is locked in by the expiry date with no 

positive net investment. Of course, this would violate our no-arbitrage principle. Similarly, if the 

value of the portfolio were positive at any time t, we would short the portfolio to produce a time 

T arbitrage profit by simply reversing the positions taken by buying the portfolio. Once again, 

this would result in a guaranteed profit with no net expenditure on our part, violating the no-

arbitrage requirement. Thus, we are able to conclude that 
 

1 Many authors only require condition (3) for the definition of a self-financing portfolio. 



 

(4)     𝑃𝑡 = −𝑐𝑡 + 𝛾𝑠,𝑡𝑆𝑡 + 𝛾𝑏,𝑡𝐵𝑡 = 0   

 

for all time t, 0 ≤ t ≤ T. We can solve this equation for the price of the call at time t: 

 

(5)     𝑐𝑡 = 𝛾𝑠,𝑡𝑆𝑡 + 𝛾𝑏,𝑡𝐵𝑡. 
 

There is still a lot of work to do to obtain a numerical solution for the value of the call, but we 

have reduced the problem to ensuring that the call must satisfy equations 2 and 3. 

 The arbitrage-free portfolio in the previous section always meets the two requirements: -

cT + γs,TST + γb,TBT = 0 and -dct + γs,tdSt + γb,tdBt = 0 for 0 ≤ t ≤ T. Since the derivation is the same 

for any derivative for which such hedging portfolios exist, we will write the conditions more 

generally for any derivative whose value at time t will be denoted by Vt:   

 

(6)     𝑉𝑡 = 𝛾𝑠,𝑡𝑆𝑡 + 𝛾𝑏,𝑡𝐵𝑡    
 

and 

  

(7)     𝑑𝑉𝑡 = 𝛾𝑠,𝑡𝑑𝑆𝑡 + 𝛾𝑏,𝑡𝑑𝐵𝑡. 

 

for 0 ≤ t ≤ T. From this perspective, we are viewing the portfolio (γs,t,, γb,t) of stock and bonds as 

replicating the derivative. Equation (7) portrays the self-financing property of the replicating 

portfolio. In an arbitrage-free market, we showed in the previous section that equations (6) and 

(7) imply that the derivative value equals the value of the portfolio for all time t (equation 5). For 

this reason, a portfolio (γs,t,, γb,t) that satisfies equations (6) and (7) is called a self-financing 

replicating portfolio for the derivative with value Vt. We have shown that if we can create a self-

financing replicating portfolio for the derivative that we know how to price, then it must equal 

the arbitrage free price for the derivative. We are going to use two different approaches to derive 

the price of the derivative. The first approach will use martingales and the second approach will 

derive a partial differential equation known as the Black-Scholes equation that the derivative 

must satisfy.  

 

Pricing a European Call Option and the Black-Scholes Formula 

 Now, we will be specific in our choice of derivatives; we will value a European call. 

First, we specify its payoff function at time T when it might be exercised. With exercise price X, 

the value of the option at expiry is cT = MAX[ST – X, 0]. The value in risk neutral probability 

space of the call at time 0 is 

 

𝑐0 = 𝑒−𝑟𝑇𝐸ℚ[𝑉𝑇|ℱ0] = 𝑒−𝑟𝑇𝐸ℚ[𝑐𝑇|ℱ0] = 𝑒−𝑟𝑇𝐸ℚ[MAX(𝑆𝑇 − 𝑋, 0)]. 

 

 We showed earlier that 

 

𝑑(𝑒−𝑟𝑡𝑆𝑡) = 𝜎𝑒−𝑟𝑡𝑆𝑡𝑑𝑍̂𝑡. 
 

By the special product rule for stochastic differentials in Section A of Chapter 9, we have 

 



𝑒−𝑟𝑡𝑑𝑆𝑡 − 𝑟𝑒−𝑟𝑡𝑆𝑡𝑑𝑡 = 𝜎𝑒−𝑟𝑡𝑆𝑡𝑑𝑍̂𝑡. 
 

Solving for dSt gives: 

 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑍̂𝑡. 
 

As we showed in Section C of Chapter 9 leading to Equation 15), with the choice of μ = r, the 

solution is: 

 

𝑆𝑇 = 𝑆0𝑒𝜎𝑍̂𝑇+(𝑟 − 
1
2

𝜎2)𝑇 . 
 

 Recall that we used a slight variation of this equation in Chapter 9 to value a call. Since 

𝑍̂𝑇~𝑁(0, 𝑇), then 𝑍̂𝑇 = 𝑍√𝑇 with Z ~ N(0,1). Thus, the solutions ST here and in Chapter 7 have 

identical probability distributions. Since the value of the call at time 0 is the same expected 

value: c0 =Eℚ[cT] = Eℚ[MAX(ST – X, 0)],this leads to the Black-Scholes formula, the same result 

that we obtained in Chapter 7, expressed as an expected future value: 

 

𝑆0𝑒𝑟𝑇𝑁(𝑑1) − 𝑋𝑁(𝑑2). 

 

 In Chapters 7 and 9, and earlier in this chapter, we have set forth the mathematics and 

pricing framework to value options and other derivatives. Our derivation of the Black-Scholes 

model in Chapter 7, while not incorrect, failed to show why we needed to change our probability 

measure to risk-neutral space and focus on the riskless return rather than the expected risk-

adjusted return of the underlying stock. Now, it should be clear that our analysis and derivation 

needs to focus on the expectation Eℚ[MAX(ST – X, 0)], even though its computation is exactly as 

we demonstrated in Chapter 7. The key to this and the previous chapter is that we have 

demonstrated the critically important feature of this expectation in risk-neutral space: this 

expectation provides an arbitrage-free pricing of the call option or other derivative for which we 

can find a self-financing replicating portfolio. Since the portfolio is self-financing, it requires 

zero net investment to maintain the arbitrage position, and since it is replicating, its initial value 

must be the same as the call's.  

 

B. Deriving the Black-Scholes Model 

 In this section, we discuss the Black-Scholes derivation of their option pricing model. We 

then work through some very simple illustrations. 

 

Black-Scholes Assumptions 

 Black and Scholes [1973] set forth a rather strict set of assumptions for their model (the 

same assumptions apply to the martingale derivations). Most importantly, the model assumes 

that underlying share prices follow a geometric Brownian motion process and that investors can 

create hedged self-financing portfolios comprising calls, underlying shares and riskless bonds. 

The set of assumptions on which the Black-Scholes model and its derivation are based are as 

follows: 

 

1. There exist no restrictions on short sales of stock or writing of call options. 

2. There are no transactions costs. 



3. There exists continuous trading of stocks and options. 

4. There exists a known constant riskless borrowing and lending rate r. 

5. The underlying stock will pay no dividends or make other distributions during the life of 

the option. 

6. The option can be exercised only on its expiration date; that is, it is a European Option. 

7. Shares of stock and option contracts are infinitely divisible. 

8. Underlying stock prices follow a geometric Brownian motion process: dSt = Stdt + 

StdZt. with constant  and  extending over the life of the option. 

 

It is important to note that, because of the Cox-Ross Risk Neutrality argument (change of 

measure to risk-neutral space), the following are not required as model inputs: 

 

1. The expected or required return or risk premium on the stock or option and 

2. Investor attitudes toward risk 

 

The Self-Financing Replicating Portfolio and Black-Scholes 

 In the previous section, we priced a derivative using a self-financing replicating portfolio 

and martingales. Again in this section, we will price a derivative instrument using a self-

financing replicating portfolio. However, rather than follow the methodologies in Chapters 7 and 

8, we will derive and solve the appropriate partial differential equation (known as the Black-

Scholes differential equation) that the derivative instrument must satisfy. This partial differential 

equation can then be solved by standard techniques (as set forth in the appendix to this chapter) 

to obtain its price. In particular, we will derive the Black-Scholes option pricing model for a call, 

assuming that our all standard Black-Scholes assumptions hold. As we learned in Section A, to 

price a call ct at any time t < T, it is sufficient to construct a self-financing replicating portfolio 

(γs,t,γb,t) of stocks and bonds whose value equals the value of the call at time T. If we denote the 

value of the portfolio by  

 

(14)      𝑐𝑡 = 𝛾𝑠,𝑡𝑆𝑡 + 𝛾𝑏,𝑡𝐵𝑡, 

 

with cT equal to the value of the call at expiry, and we require that the self-financing property is 

satisfied: 

 

(15)             𝑑𝑐𝑡 = 𝛾𝑠,𝑡𝑑𝑆𝑡 + 𝛾𝑏,𝑡𝑑𝐵𝑡. 
 

It is convenient to rewrite the self-financing property (15) in the form:  

 

(16)            𝛾𝑏,𝑡𝑑𝐵𝑡 = 𝑑𝑐𝑡 − 𝛾𝑠,𝑡𝑑𝑆𝑡.   
 

 Since Bt = ert, dBt =rertdt = rBt dt, so equation (16) takes the form 

 

(17)          𝑟𝛾𝑏,𝑡𝐵𝑡𝑑𝑡 = 𝑑𝑐𝑡 − 𝛾𝑠,𝑡𝑑𝑆𝑡. 
 

Solving for γb,tBt = ct - γs,tSt in equation (14), and substituting this result into equation (17), 

equation (17) becomes: 

 



(18)                                               𝑟(𝑐𝑡 − 𝛾𝑠,𝑡𝑆𝑡)𝑑𝑡 = 𝑑𝑐𝑡 − 𝛾𝑠,𝑡𝑑𝑆𝑡. 

 

 Recall that we assume that the stock price follows a geometric Brownian motion process: 

 

     𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑍𝑡 

 

Now, we will invoke Itô’s Lemma from Chapter 9 to express the differential dct (equation 15): 

 

(19)                                 𝑑𝑐𝑡 = (
𝜕𝑐

𝜕𝑡
+ 𝜇𝑆𝑡

𝜕𝑐

𝜕𝑆
+

1

2
𝜎2𝑆𝑡

2 𝜕2𝑐

𝜕𝑆2) 𝑑𝑡 + 𝜎𝑆𝑡
𝜕𝑐

𝜕𝑆
𝑑𝑍𝑡, 

 

which we will use to replace dct in equation (18) and then simplify: 

 

(20)         𝑟(𝑐𝑡 − 𝛾𝑠,𝑡𝑆𝑡)𝑑𝑡 = (
𝜕𝑐

𝜕𝑡
+ 𝜇𝑆𝑡

𝜕𝑐

𝜕𝑆
+

1

2
𝜎2𝑆𝑡

2 𝜕2𝑐

𝜕𝑆2) 𝑑𝑡 + 𝜎𝑆𝑡
𝜕𝑐

𝜕𝑆
𝑑𝑍𝑡 − 𝛾𝑠,𝑡𝑑𝑆𝑡 

= (
𝜕𝑐

𝜕𝑡
+ 𝜇𝑆𝑡

𝜕𝑐

𝜕𝑆
+

1

2
𝜎2𝑆𝑡

2
𝜕2𝑐

𝜕𝑆2
) 𝑑𝑡 + 𝜎𝑆𝑡

𝜕𝑐

𝜕𝑆
𝑑𝑍𝑡 − 𝛾𝑠,𝑡(𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑍𝑡) 

= (
𝜕𝑐

𝜕𝑡
+

1

2
𝜎2𝑆𝑡

2
𝜕2𝑐

𝜕𝑆2
) 𝑑𝑡 + 𝜇𝑆𝑡 (

𝜕𝑐

𝜕𝑆
− 𝛾𝑠,𝑡) 𝑑𝑡 + 𝜎𝑆𝑡 (

𝜕𝑐

𝜕𝑆
− 𝛾𝑠,𝑡) 𝑑𝑍𝑡 . 

 

The instantaneous expected rate of return  may reflect individual investor forecasts and risk 

preferences, and might even vary from investor to investor. It is unobservable and not very 

useful for most option valuation calculations. We encountered this situation before with physical 

probabilities. We dealt with this issue earlier by using Radon-Nikodym derivatives (we used pure 

securities and hedging probabilities without technically using the term Radon-Nikodym 

derivative)  to transform physical probabilities into risk-neutral probabilities, which are 

consistent with eliminating arbitrage opportunities. If we choose 𝛾𝑠,𝑡 =
𝜕𝑐

𝜕𝑆
, equation (20) will 

simplify to:  

 

(21)     𝑟 (𝑐𝑡 − 𝑆𝑡
𝜕𝑐

𝜕𝑆
) 𝑑𝑡 = (

𝜕𝑐

𝜕𝑡
+

1

2
𝜎2𝑆𝑡

2 𝜕2𝑐

𝜕𝑆2) 𝑑𝑡. 

 

 This step is key. Notice that this Equation (21) makes no reference to , the instantaneous 

expected rate of return for the stock. This suggests our pricing model will not depend on a risk 

premium or investor risk preferences, as in fact we will see when we obtain the solution. Only 

the riskless return r is used. One can view the amount 𝑐𝑡 − 𝑆𝑡
𝜕𝑐

𝜕𝑆
 as the value of a portfolio 

consisting of buying 1 call and shorting 
𝜕𝑐

𝜕𝑆
 shares of the stock. As we stated above, this portfolio 

is known as a delta hedged portfolio. It is perfectly hedged to guarantee the riskless rate of return 

r. Equation (21) is divided by dt to become: 

 

    𝑟 (𝑐𝑡 − 𝑆𝑡
𝜕𝑐

𝜕𝑆
) =

𝜕𝑐

𝜕𝑡
+

1

2
𝜎2𝑆𝑡

2 𝜕2𝑐

𝜕𝑆2 .    

 

 If the stock price is known (e.g., if S = S0, today's stock price), the call value becomes a 

function of the real-valued independent variables S and t: 



 

(22)     𝑟 (𝑐 − 𝑆
𝜕𝑐

𝜕𝑆
) =

𝜕𝑐

𝜕𝑡
+

1

2
𝜎2𝑆2 𝜕2𝑐

𝜕𝑆2. 

 

or 

 

(23)      
𝜕𝑐

𝜕𝑡
= 𝑟𝑐 − 𝑟𝑆

𝜕𝑐

𝜕𝑆
−

1

2
𝜎2𝑆2 𝜕2𝑐

𝜕𝑆2
. 

 

This partial differential equation is called the Black-Scholes differential equation. To obtain a 

unique solution to the Black-Scholes equation, we need appropriate boundary conditions. Since 

there is a first-order partial derivative of c with respect to the variable t, we need one boundary 

condition for c with respect to time. In our case, this will be to specify the value at the time of 

expiration T. Of course, the value of the call c(S,T) at expiry time T is a known function of the 

stock price S: c(S,T) = max(S-X,0). Since there is a second-order partial derivative of c with 

respect to S (it is the highest order derivative that matters), then we need to specify two boundary 

conditions for c with respect to the stock price. Obviously, if the stock price S = 0, the call 

should be worthless at any time. So we will assume the boundary condition c(0,t) = 0. As S→∞, 

the stock price will always be able to overtake any exercise price X on the expiration date. This 

leads to the boundary condition c(S,t)→S-X as S→∞. The Black-Scholes equation and these 

boundary conditions guarantee that there is a unique solution (unique pricing) for the call. For 

the interested reader, a derivation of the solution is in appendix A to this chapter. 

 

The Black Scholes Model 

 Consistent with our findings in Chapters 7 and 9, the value of the call at time zero is: 

 

(24)      𝑐0 = 𝑆0𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2)  
 

with 

 

(25)   𝑑1 = 𝑑2 + 𝜎√𝑇  and 𝑑2 =
𝑙𝑛(

𝑆0
𝑋

)+(𝑟− 
1

2
𝜎2)𝑇

𝜎√𝑇
, 

 

where N(d*) is the cumulative normal density function for (d*). From a computational 

perspective, one would first solve for d1 and d2 before c0.



8 
 

 Again, it is important to note how far-ranging the implications are for the Black-Scholes 

differential equation. While we have focused on call valuation thus far, the equation can be used 

to value any derivative instrument on the underlying security whose price is generated by 𝑑𝑆𝑡 =
𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑍𝑡. We will discuss additional applications of the Black-Scholes differential 

equation to additional derivative instruments later in this chapter. 

 

Put-Call Parity 

 From initial payoff functions set forth in Chapter 6, the terminal value put-call relation is 

characterized as follows: 

 

(6)  cT - pT = MAX[0, ST - X] - MAX[0, X – ST] = ST - X 

 

A slight rewrite of this terminal put-call relation allows us to write the terminal or exercise value 

a put given the terminal value of a call with identical exercise terms: 

 

(4)     pT = cT + X - ST 

 

 

The Black-Scholes Model: Simple Numerical Illustrations 

 Consider the following example of a Black-Scholes model application where an investor 

can purchase a six-month call option for $7.00 on a stock that is currently selling for $75. The 

exercise price of the call is $80 and the current riskless rate of return is 10% per annum. The 

variance of annual returns on the underlying stock is 16%. At its current price of $7.00, does this 

option represent a good investment? We will note the model inputs in symbolic form: 

 

   T   = .5  r  = .10 

   X = 80  2 = .16 

     = .4  S0 = 75 

 

Our first step is to find d1 and d2: 

 

  

( )
09.

2828.

09.9375.

5.4.

5.16.
2

1
10.

80

75

1 =
+

=









++









=
ln

ln

d  

 

   1928.2828.09.5.4.09.2 −=−=−=d  

 

Next, by either using a z-table (See end-of-chapter Appendix B) or by using an appropriate 

polynomial estimating function, we find cumulative normal density functions for d1 and d2: 

 

( ) ( )

( ) ( ) 423549.1928.

535864.09.

2

1

=−=

==

NdN

NdN
 

 

 Finally, we use N(d1) and N(d2) to value the call:  
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Since the 7.958 value of the call exceeds its 7.00 market price, the call represents a good 

purchase. Next, we use the put-call parity relation to find the value of the put as follows: 

 

    p0 = c0  + Xe-rT - S0 

 

   p0 = 7.958 + 80(.9512) - 75 = 9.054 

 

 The next Section C will focus on issues related to the application of Black-Scholes to 

option pricing and to variance estimates. In later chapters, we will begin to relax Black-Scholes 

assumptions to obtain additional applications of Black-Scholes. 

 

C. Implied Volatility 

 Four of the 5 inputs required to implement the Black-Scholes model are easily observed. 

The option exercise price and term to expiry are defined by the option contract. The riskless 

return and underlying stock price are based on current quotes. Only the underlying stock return 

volatility during the life of the option cannot be observed. Instead, we often employ a traditional 

sample estimating procedure for return variance: 

 

2 = Var[rt] = Var[lnSt - lnSt-1] 

 

 The difficulty with this procedure is that it requires that we assume that underlying 

security return variance is stable over time; more specifically, that future variances equal or can 

be estimated from historical variances. An alternative procedure suggested by Latane and 

Rendleman [1976] is based on market prices of options that might be used to imply variance 

estimates. For example, the Black-Scholes Option Pricing Model might provide an excellent 

means to estimate underlying stock variances if the market prices of one or more relevant calls 

and puts are known. Essentially, this procedure determines market estimates for underlying stock 

variance based on known market prices for options on the underlying securities. When we use 

this procedure, we assume that the market reveals its estimate of volatility through the market 

prices of options. 

 Consider the following example pertaining to a six-month call currently trading for $8.20 

and its underlying stock currently trading for $75: 

 

   T = .5  r = .10  c0 = 8.20 

   X = 80  S0 =  75 

 

If investors use the Black-Scholes Options Pricing Model to value calls, the following should be 

expected: 
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As we will demonstrate shortly, we find that this system of equations holds when  = .41147. 

Thus, the market prices this call as though it expects that the standard deviation of anticipated 

returns for the underlying stock is .41147. 

 Unfortunately, the system of equations required to obtain an implied variance has no 

closed form solution. That is, we will be unable to solve this equation set explicitly for standard 

deviation; we must search, iterate and substitute for a solution. One can substitute trial values for 

 until she finds one that solves the system. A significant amount of time can be saved by using 

one of several well-known numerical search procedures such as the Method of Bisection or the 

Newton-Raphson Method. 

 

The Method of Bisection 

 We seek to solve the above system of equations for . This is equivalent to solving for 

the root of: 

 

f(*) = 0 = 75N(d1) – 80e-.1.5N(d2) - 8.20 

 

based on equations above for d1 and d2. There exists no closed form solution for . Thus, we will 

use the Method of Bisection to search for a solution. We first arbitrarily select endpoints for our 

range of guesses, such as b1=.2 and a1=.5 so that f(b1) = -4.46788 < 0 and f(a1) = 1.860465 > 0. 

Since these endpoints result in f() with opposite signs, our first iteration will be in the middle: 

1 = .5(.2+.5) = .35. We find that this estimate for  results in a value of -1.29619 for f(). Since 

this f() is negative, we know that * is in the segment b2=.35 and a2=.5. Moving to Row n=2, 

we repeat the iteration process, finding after 16 iterations that *=.41146. Table 1 details the 

process of iteration. 

 

Equation for f: S0N(d1)-Xe-rtN(d2)-c0 

 a1 =  0.5  b1=  0.2 1 =  0.35  r  =  0.1  S0=  75  X =  80  

 c0=  8.2  T =  0.5  
                     n             d1(n)              d2(n)    N(d1)      N(d2)          N(d1)        N(d2)             f(n)   _     

   f(a1)=   1.860465     0.5   0.1356555     -0.2178978   0.553953   0.41375      0.553953   0.413754     1.860465  

   f(b1)= - 4.46788    0.2  -0.0320922     -0.1735135   0.487199   0.431122    0.487199   0.431124   -4.46788  

 n      an               bn             n             d1(n)               d2(n)          N(d1)         N(d2)             N(d1)        N(d2)           f(n)         _      
 1    0.5            0.2            0.35          0.06499919      -0.1824882   0.525913     0.427597     0.525913   0.4276        -1.29619  
 2    0.5            0.35           0.425        0.10188237      -0.198638     0.540575     0.42127       0.540575   0.421273     0.284948  
 3    0.425        0.35           0.3875        0.08394239    -0.1900615   0.533449     0.424628     0.533449   0.424630    -0.50501  
 4    0.425        0.3875       0.40625    0.09302042     -0.1942417   0.537056     0.42299       0.537056   0.422993    -0.10987  
 5    0.425        0.40625    0.41562    0.09747658     -0.1964147    0.538826    0.42214       0.538826   0.422143     0.087583  
 6    0.41562    0.40625    0.41093    0.09525501     -0.1953217    0.537944    0.42256       0.537944   0.422571    -0.01113  
 7    0.41562    0.41093    0.41328    0.09636739     -0.1958666    0.538386    0.42235       0.538386   0.422357     0.038229  
 8    0.41328    0.41093    0.41210    0.09581161     -0.1955937    0.538165    0.42246       0.538165   0.422464     0.01355  
 9    0.41210    0.41093    0.41152    0.09553341     -0.1954576    0.538054    0.42251       0.538054   0.422517     0.00121  
10   0.41152    0.41093    0.41123    0.09539424    -0.1953896    0.537999    0.42254       0.537999   0.422544    -0.00496  
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11   0.41152    0.41123    0.41137    0.09546383    -0.1954236    0.538027    0.42252       0.538027   0.422531    -0.00188  
12   0.41152    0.41137    0.41145    0.09549862    -0.1954406    0.538041    0.42252       0.538041   0.422524    -0.00033  
13   0.41152    0.41145    0.41148    0.09551602    -0.1954491    0.538048    0.42251       0.538048   0.422521     0.000438  
14   0.41148    0.41145    0.41146    0.09550732    -0.1954449    0.538044    0.42251       0.538044   0.422522     0.000053  
15   0.41146    0.41145    0.41145    0.09550297    -0.1954427    0.538042    0.42252       0.538042   0.422523    -0.00014  
16   0.41146    0.41145    0.41146    0.09550514    -0.1954438    0.538043    0.42252       0.538043   0.422523    -0.00004  

 

Table 1: Using the Bisection Method to Estimate Implied Volatility 

 

The Newton Raphson Method 

 The Newton-Raphson Method can also be used to more efficiently iterate for an implied 

volatility. We will solve for the implied standard deviation in our illustration using the Newton-

Raphson Method to find the root of the equation: f(σ) = S0N (d1) - Xe-rTN(d2) - c0. The Newton 

Raphson Method estimates the root of an equation f(σ) =0 by using the formula 

 

𝜎𝑛 = 𝜎𝑛−1 −
𝑓(𝜎𝑛−1)

𝑓′(𝜎𝑛−1)
. 

 

One starts with some initial rough estimate σ0 for the root, then repeatedly applying the formula 

above, iterating until the desired accuracy is obtained.  

 For our example, we arbitrarily choose an initial trial solution of σ = σ0 = .6. First, we 

need the derivative of f(σ) with respect to the underlying stock return standard deviation σ.2 

Since we are treating c0 as a given constant, differentiating this function is equivalent to 

differentiating the call function c = S0N (d1)-Xe-rTN(d2) with respect to σ. We leave as a 

homework exercise that:2 

 

    ,0
2

20

2
1

=



−d

e
TSc


  Vega   

 

with an arbitrarily selected initial trial solution of σ0 = .6. We see from Table 2 that this standard 

deviation results in a value of f(0) = 3.95012, implying a variance estimate that is too high. 

Substituting .6 into Equation 3 for 0, we find that f '(σ0) = 20.82509. Thus, our second trial 

value for σ is determined by: 1  0 - (f(σ0) ÷ f '(σ0)) = .6 - (3.95012 ÷ 20.82509) = .41032. This 

process continues until we converge to a solution of approximately .41147. Notice that the rate 

of convergence in this example is much faster when using the Newton-Raphson Method than 

when using the Method of Bisection. 

 

Equation for f: S0N(d1)-Xe-rTN(d2) 

r  = 0.1    S0 = 75   X  = 80 c0 = 8.20  T  = 0.5  0 = 0.6 

n       n         f'(n)         d1(n)       d2(n)      N(d1)       N(d2)          f(n)__   

1  .60000   20.82509   .177864     -.2464    .5705853   .402686    3.95012  

2  .41032   21.06194   .094961     -.19518  .5378271  .422626   -0.02415 

3  .41147   21.06085   .095506     -.19544  .5380436  .422522    0.00000   _  

 
 

2 See Section 7.5 for additional details and discussion concerning vega, one of the "Greeks," and Exercise 7.7 for its 

derivation. 
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Table 2: The Newton-Raphson Method and Implied Volatilities 

 

Smiles, Smirks and Aggregating Procedures 

 We see that with an appropriate iteration methodology, solving for implied volatility is 

not a difficult matter. However, another difficulty arising with implied variance estimates results 

from the fact that there will typically be more than one option trading on the same stock. 

However, what if the short- and long-term uncertainty of a stock differ? Or, what if options with 

different strike prices disagree on the same underlying stock volatility? Both of these 

inconsistencies regularly occur. This latter effect in which implied volatilities vary with respect 

to option exercise prices is sometimes known as the smile or smirk effect. See Figure 1 that 

depicts a smile effect for 5 options on a single stock and Figure 2 that depicts a smirk effect for a 

series of options on a second stock.3 Each option's market price will imply its own underlying 

stock variance, and these variances are likely to differ. How might we use this conflicting 

information to generate the most reliable variance estimate? Each of our implied variance 

estimates is likely to provide some information, yet has the potential for having measured with 

error.  

 
Options with high or low exercise prices relative to the current underlying stock price produce higher implied 

volatilities. 

 

 

Figure 1: The Volatility Smile: Implied Volatility Given S0 

 

 
3 The "smile effect" pertains to the empirical finding that options with very high and very low exercise prices 

relative to current underlying security prices produce high implied volatilities relative to options trading at or near 

the money. The "smirk effect" occurs when only either high or low exercise prices produce higher implied 

volatilities. 

 

X 

  Implied 

σ 

X = S0 



13 
 

 
Options with high exercise prices relative to the current underlying stock price produce higher implied volatilities. 

Figure 2: The Volatility Smirk: Implied Volatility Given S0 

 

 Settling these implied volatility problems is largely an empirical or practitioner issue.4 

There is an empirical literature that focuses on how to use the information implied by two or 

more options to determine the appropriate volatility forecast. For example, we can preserve 

much of the information from each of our estimates and eliminate some of our estimating error if 

we use for our own implied volatility a value based on an average of all of our estimates. 

However, because volatility might be expected to vary over time, one should average only those 

variances implied by options with the same terms to expiration. Consider the following two 

methodologies for averaging implied standard deviation estimates: 

 

1. Simple average: Here, the final standard deviation estimate is simply the mean of the 

standard deviations implied by the market prices of the calls. 

2. Average based on price sensitivities to : Calls that are more sensitive to  as indicated by 

c/ are more likely to imply a correct standard deviation estimate. Suppose we have n 

calls on a stock, and each call price cj has an implied stock standard deviation j. Each call 

price will have a sensitivity (vega; discussed in the next section) to its implied underlying 

stock standard deviation cj/j. The n option sensitivities can be summed, and a weighted 

average standard deviation estimate for the underlying stock based on its n options can be 

computed where the weight wi associated with the implied standard deviation estimate for 

call option i is: 
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. 

 

Thus, the final standard deviation estimate for a given stock based on all of the implied 

standard deviations from each of the call prices is: 

 
4 There are a small number of studies that suggest that historical volatilities contain useful information not contained 

in implied volatilities, and might even, in some instances, be better predictors of future volatility (See, for example, 

Canina and Figlewski [1993]). 
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 While these aggregating procedures may provide useful information for volatility 

estimates, it might be useful to make entirely different sets of assumptions for option analysis, 

For example, while the Black-Scholes model assumes constant volatility, in Chapter 8, we will 

briefly discuss the assumption of stochastic volatility. More generally, we can allow volatility to 

be any function of time. In Chapter 2, we discussed jumps and Poisson processes. Black-Scholes 

assumes Brownian motion; this assumption can be relaxed to also allow for stock price jumps. 

We can also allow for time-varying interest rates, as we will discuss in Chapter 8. All of these 

assumption adjustments have the potential to explain or reduce so-called smile or smirk effects. 

 

D. Empirical Evidence 

 Does the Black-Scholes model do a reasonable job explaining how investors price 

options? Numerous empirical tests yield evidence on this issue, generally finding that the model 

does work quite well explaining the pricing structure of stock options. However, the tests do 

reveal some biases. 

 

The Black and Scholes Study 

 Black and Scholes [1972] conducted the first empirical test of their model. They collected 

over-the-counter price data on 2039 calls and 3052 straddles market securities on 545 underlying 

stocks from 1966 to 1969. In these markets, options were dividend protected (the option exercise 

price decreased on ex-dividend dates). They evaluated options whenever possible (if they were 

traded on a given day, though secondary markets were very thin). In most instances, they were 

unable to use market prices and had to value options based on their own model for the purpose of 

updating their hedges. In their hypothetical portfolios, bought calls if they were undervalued and 

sold the overvalued ones. They formed hedge portfolios with calls and their underlying shares 

based on their computed deltas. The portfolios that they formed are categorized by call option 

transaction as follows: 

 

1. Buy all calls at market prices 

2. Buy all calls at model prices 

3. Buy undervalued calls and sell overvalued calls at model prices 

4. Buy undervalued calls and sell overvalued calls at market prices 

 

 Again, the calls were combined into hedge portfolios with underlying shares. Excess 

returns as of option expiry on their hedge portfolios were defined as: 

 

    trVV FHH −  

 

 

∆𝑉𝐻 = [∆𝐶 −
𝜕𝐶

𝜕𝑆
∆𝑆] −  [𝑐 −

𝜕𝐶

𝜕𝑆
𝑆] 𝑟𝑓∆𝑡  𝑤ℎ𝑒𝑟𝑒 

𝜕𝐶

𝜕𝑆
= 𝑁(𝑑1) = ℎ𝑒𝑑𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 
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Excess hedge portfolio returns should equal zero if the Black-Scholes model explains market 

pricing. Black and Scholes updated hedge ratios as calls were amortized and as underlying share 

prices changed. 

 Black and Scholes found that use of holding period (ex post) variances yielded 

insignificant holding period hedge portfolio profits when transacting at model-computed prices 

with zero transactions costs. However, they also found that using historical (ex ante) variances to 

value calls yielded significant positive profits. Thus, the market uses more than historical 

variances to estimate true variances. Returns were uncorrelated with the market. On the other 

hand, transactions costs eliminated these profits. 

 In the absence of transactions costs, Black and Scholes found that portfolios 1 and 2 did 

not result in significant returns, indicating no consistent under- or over-valuation by either the 

market or the model. Portfolio 3 yielded negative returns; portfolio 4 yielded positive returns. 

This indicates that market prices contain information not incorporated by the model, nonetheless, 

one can still earn profits before transactions costs employing Black Scholes because the model 

contains some information not incorporated in market prices. In any case, Black and Scholes 

explained return results for portfolios 3 and 4 as follows: The market underestimates variances 

for high-risk stocks, yet the forecasts based on historical data are actually too high. Hence, model 

prices for high-risk stocks are too high; market prices are too low. The opposite is true for low -

risk stocks. The high-risk stock effects will outweigh the low-risk stock effects. 

 There are a few concerns regarding the Black-Scholes tests that are worth noting. First, 

perfect continuous hedges are impossible. However, Black and Scholes updated portfolios daily 

and argue that their returns are uncorrelated with the market. Hence, the hedging errors can be 

diversified away. Second, since OTC options prices are observed only when they are created or 

expire, Black Scholes had to create artificial prices from their model daily. Option values are 

needed to determine hedge ratios. However, final portfolio returns were determined at option 

expiration. In conclusion, Black and Scholes found that their model seemed to work best for 

medium maturity at-the-money calls. 

 

The Galai and Bhattacharya Studies 

 Galai [1977] used daily CBOE data from 4-26-1973 to 11-30-1973. He adjusted hedges 

on a daily basis with options transactions, not stock transactions like Black Scholes. Galai found 

that the Black Scholes Model resulted in significant excess returns before transactions costs but 

that transactions costs (at 1%) exceeded excess returns. His results held given changes in 

variances and risk-free rates, but that higher dividend yield stock options yielded lower profits. 

This result may simply reflect that Black Scholes assumes no dividends. Galai further found that 

model specification deviations led to worse performance and that tests of spread strategies led to 

results similar to those of the individual options. 

 Bhattacharya [1980] also found that Black Scholes Model prices were appropriate most 

of the time. Bhattacharya structured hedge portfolios based on simulated Black-Scholes values 

and found only one significant systematic case of mis-pricing - with at the money options whose 

prices were too high at expiration. 

 

Smiles and Smirks 

 MacBeth and Merville [1979] studied estimated implied volatilities on all options on six 

stocks during the period 1975-76 and found the following: 
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1. Black Scholes prices are too low for in the money options and are too high for out of the 

money options. Mispricing worsens as the option is further in or out of the money. 

2. Mispricing in (1) above worsens as the time to expiration of the option increases. 

 

Thus, the model obtains higher implied volatilities for short-term in-the-money options than for 

long-term out-of-the-money options. Although Blattberg and Gonedes [1974] had already found 

that option implied volatilities are time-variant, if the Black-Scholes Model is correct, implied 

volatilities should be invariant with respect to the extent to which the option is in- or out-of-the-

money. Thus, the results imply that in the money options are overpriced in the market relative to 

out of the money options if we accept Black-Scholes as correct. Market prices become more in 

line with Black-Scholes as expiration draws near. 

 MacBeth and Merville [1980] compared the Black Scholes Model to the Constant 

Elasticity of Variance Model with mixed results, generally finding that the Constant Elasticity of 

Variance formula worked slightly better than Black-Scholes. 

 

Put-Call Parity 

 Klemkosky and Resnick [1979] tested the Put-Call Parity relation on 606 hedges, 

considering both short and long hedge portfolios and assuming non-stochastic dividends. They 

removed from their data set those options that were likely to be exercised early. Their results 

were consistent with the Put-Call Parity Theorem, finding that profits were generally within the 

bounds associated with transactions costs. Gould and Galai [1974] also test put-call parity: 

 

00000 +−− BSpc  

 

or, given transactions costs (TC): 

 

TCBSpc +−− 0000
 

 

Gould and Galai [1974] compute call, put, stock and bond prices to infer transactions costs. They 

find that the inferred transactions costs were lower than actual transactions costs, implying that 

the market must be efficient with respect to put call parity. However, their tests (as well as the 

tests of Stoll [1969]) may be biased because of dividend protection. 
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Exercises 

 

1.  Demonstrate that the definition given for self-financing in property (7) is equivalent to the 

condition that over any infinitesimal time interval from t to t + dt, the change in the value of the 

portfolio resulting purely from the transactions ds,t and db,t that are executed over this time 

interval must equal zero. 

 

2.  Suppose that a self-financing portfolio includes a single short position in a call option with 

exercise price X. This single short position remains constant over time t. The portfolio also has a 

long position in 𝛾𝑠,𝑡 shares of stock that varies over time t along with 𝛾𝑏,𝑡 short positions in 

bonds (face value = X) that also vary over time. The bonds will be paid off by the exercise 

money realized if and when the call is exercised at time T. 

    a.  Write an expression that gives the portfolio value VT at time T. 

    b.  Suppose that at time T, the value of the stock exceeds the exercise price X of the call. What 

will be 𝛾𝑠,𝑇 and 𝛾𝑏,𝑇? 

    c.  Suppose that at time T, the value of the stock is less than the exercise price X of the call. 

What will be 𝛾𝑠,𝑇 and 𝛾𝑏,𝑇? 

 

3.  Assuming a Black-Scholes environment, evaluate calls and puts for each of the following 

European stock option series: 

   Option 1       Option 2      Option 3     Option 4 

    T = 1            T  = 1           T = 1           T = 2 

    S = 30          S  = 30        S = 30         S = 30 

      = .3            = .3       = .5           = .3 

    r  = .06         r  = .06     r = .06           r = .06 

    X = 25        X = 35      X = 35           X = 35 

 

4.  Evaluate each of the European options in the series on ABC Company stock assuming a 

Black-Scholes environment. Current market prices for each of the options are listed in the table. 

Determine whether each of the options in the series should be purchased or sold at the given 

market prices. The current market price of ABC stock is 120, the August options expire in nine 

days, September options in 44 days and October options in 71 days. The stock variances prior to 

expirations are projected to be .20 prior to August, .25 prior to September, and .20 prior to 

October. The treasury bill rate is projected to be .06 for each of the three periods prior to 

expiration. Convert the number of days given to fractions of 365-day years, as we shall assume 

that trading occurs 365 days per year. 

                              CALLS 

   X          AUG       SEP      OCT    

  110   9.500  10.500    11.625    = .20 FOR AUG 

  115  4.625    7.000     8.125     = .25 FOR SEP 

  120  1.250     3.875     5.250     = .20 FOR OCT 

  125    .250    2.125     3.125    r  =.06 

  130     .031      .750     1.625    S = 120 

                                        

                               PUTS      

   X     AUG    SEP   OCT  
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  110     .031    .750    1.500 

  115     .375   1.750   2.750 

  120    1.625   6.750   4.500 

  125    5.625   6.750   7.875 

  130  10.625 10.750 11.625 

Exercise prices for 15 calls and 15 puts are given in the left columns. Expiration dates are given 

in column headings and current market prices are given in the table interiors. 

 

5.  Use put-call parity and the Black-Scholes call pricing model to verify the following in a 

Black-Scholes environment: 

𝑝0 = 𝑋𝑒−𝑟𝑇 𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1) 

 

6.  Emu Company stock currently trades for $50 per share. The current riskless return rate is .06. 

Under the Black-Scholes framework, what would be the standard deviations implied by six-

month (.5 year) European calls with current market values based on each of the following 

striking prices? That is, with market prices of calls taken as given and equal to Black-Scholes 

estimates, what standard deviation estimates in Black-Scholes models would yield call values 

equal to market values in each of the following scenarios? 

    a. X = 40;  c0 = 11.50 

    b. X = 45;  c0 =  8.25 

    c. X = 50;  c0 =  4.75 

    d. X = 55;  c0 =  2.50 

   e. X = 60;  c0 =  1.25 

 

7.  Cannondale Company stock is currently selling for $40 per share. Its historical standard 

deviation of returns is .5. The one-year Treasury bill rate is currently 5%. Assume that all of the 

standard Black-Scholes Option Pricing Model assumptions hold. 

   a. What is the value of a put on this stock if it has an exercise price of $35 and expires in 

one year? 

   b. What is the implied probability that the value of the stock will be less than $30 in one 

year? 
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Solutions 

 

1.  By the general product rule for stochastic processes in Section 6.1.1, the change in the value 

of the portfolio equals: 

𝑑𝑉𝑡 = 𝑑(𝛾𝑠,𝑡𝑆𝑡) + 𝑑(𝛾𝑏,𝑡𝐵𝑡) = 𝛾𝑠,𝑡𝑑𝑆𝑡 + 𝑆𝑡𝑑𝛾𝑠,𝑡 + 𝑑𝑆𝑡𝑑𝛾𝑠,𝑡+𝛾𝑏,𝑡𝑑𝐵𝑡 + 𝐵𝑡𝑑𝛾𝑏,𝑡 + 𝑑𝐵𝑡𝑑𝛾𝑏,𝑡 

= (𝑆𝑡 + 𝑑𝑆𝑡)𝑑𝛾𝑠,𝑡 + (𝐵𝑡 + 𝑑𝐵𝑡)𝑑𝛾𝑏,𝑡 + 𝛾𝑠,𝑡𝑑𝑆𝑡 + 𝛾𝑏,𝑡𝑑𝐵𝑡. 
The infinitesimal transactions are buying or shorting dγs,t shares of the stock at a price of St+dSt 

per share and dγb,t units of the bond at price of Bt+dBt per unit. Thus, the change in value 

resulting from these transactions is (St+dSt)dγs,t+(Bt+dBt)dγb,t. From the equation above, we see 

that dVt = s,tdSt + b,tdBt if and only if  (St+dSt)dγs,t+(Bt+dBt)dγb,t = 0 as we set out to prove. 

 

2. a. 𝑉𝑇 = −𝑐𝑇 + 𝛾𝑠,𝑇𝑆𝑇 + 𝛾𝑏,𝑇𝐵𝑇 = −𝑀𝐴𝑋[𝑆𝑇 − 𝑋, 0] + 𝛾𝑠,𝑇𝑆𝑇 + 𝛾𝑏,𝑇𝑋 = 0  

       b. Since cT =ST - X when ST exceeds X, then 
𝜕𝑐𝑇

𝜕𝑆
= 1. In the Black-Scholes derivation we 

showed that we must choose  𝛾𝑠,𝑇 =
𝜕𝑐𝑇

𝜕𝑆
= 1. Solving for γb,t in the equation:  −𝑀𝐴𝑋[𝑆𝑇 −

𝑋, 0] + 𝛾𝑠,𝑇𝑆𝑇 + 𝛾𝑏,𝑇𝑋 = −[𝑆𝑇 − 𝑋, 0] + 1 × 𝑆𝑇 + 𝛾𝑏,𝑇𝑋 = 0, we find that γb,t = -1. This 

strategy ensures that the portfolio is self-financing at time T and has a time T value equal to zero: 

𝑉𝑇 = −[𝑆𝑇 − 𝑋] + 𝛾𝑠,𝑇𝑆𝑇 + 𝛾𝑏,𝑇𝑋 = 0. 

       c.  Since cT = 0 when ST is less than X, then 
𝜕𝑐𝑇

𝜕𝑆
= 0. In the Black-Scholes derivation we 

showed that we must choose  𝛾𝑠,𝑇 =
𝜕𝑐𝑇

𝜕𝑆
= 0. Solving for γb,t in the equation:  −𝑀𝐴𝑋[𝑆𝑇 −

𝑋, 0] + 𝛾𝑠,𝑇𝑆𝑇 + 𝛾𝑏,𝑇𝑋 = −0 + 0 × 𝑆𝑇 + 𝛾𝑏,𝑇𝑋 = 0, we find that γb,t = 0. This strategy ensures 

that the portfolio is self-financing at time T and has a time T value equal to zero: 𝑉𝑇 = −0 +
𝛾𝑠,𝑇𝑆𝑇 + 𝛾𝑏,𝑇𝑋 = 0. 

 

3. The options are valued with the Black-Scholes Model in a step-by-step format in the following 

table: 

 

       OPTION 1       OPTION 2       OPTION 3       OPTION 4 

d(1)       .957739          -.163836            .061699         .131638 

d(2)       .657739          -.463836           -.438301        -.292626  

N[d(1)]      .830903           .434930            .524599         .552365 

N[d(2)]      .744647           .321383            .330584         .384904 

 

Call        7.395               2.455                  4.841               4.623 

Put         0.939              5.416       7.803             5.665 

 

4.  Value the calls using the Black-Scholes Model: 

 

       c0 = S0N(d1) - Xe-rTN(d2) 

       d1 = [ln(S÷X) + (r + .52)T] ÷ T 

       d2 = d1 - T 

 

Thus, we will first compute d1, d2, N(d1), N(d2) for each of the calls; then we will compute each 

call's value. We will then use put-call parity to value each put. First find for each of the 15 calls 
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values for d1: 

  X         AUG         SEP         OCT    

     110    2.833394    1.129163    1.162841 

     115    1.417978     .617046     .658904 

     120     .062811     .126728     .176418 

     125   -1.237028    -.343571    -.286369 

     130   -2.485879    -.795423    -.731003 

Next, find for each of the 15 calls values for d2: 

  X         AUG         SEP         OCT    

     110    2.801988    1.042362    1.074632 

     115    1.386572     .530245     .570695 

     120     .031405     .039928     .088209 

     125   -1.268433    -.430371    -.374578 

     130   -2.517284    -.882222    -.819212 

Now, find N(d1) for each of the 15 calls: 

  X         AUG         SEP         OCT    

     110     .997697     .870585     .877553 

     115     .921901     .731398     .745021 

     120     .525041     .550422     .570017 

     125     .108038     .365584     .387298 

     130     .006462     .213184     .232389 

Next, determine N(d2) for each of the 15 calls: 

  X         AUG         SEP         OCT    

     110     .997461     .851378     .858730 

     115     .917214     .702029     .715897 

     120     .512527     .515925     .535145 

     125     .102322     .333463     .353987 

     130     .005913     .188828     .206333 

Now use N(d1) and N(d2) to value the calls and put-call parity to value the puts. 

                      CALLS             

        X      AUG      SEP      OCT     

      110   10.165   11.494   11.942    

      115    5.305    7.616    8.030    

      120    1.593    4.586    4.930    

      125     .193    2.488    2.741    

      130     .008    1.211    1.375    

                     PUTS 

   X Aug         Sep        Oct  

  110    0.003       .701   0.666 

  115    0.134      1.787  1.695 

  120   1.415      3.721  3.537 

  125 5.009      6.587  6.290 

  130    9.816     10.274  9.866 

The options whose values are underlined are overvalued by the market; they should be sold. 

Other options are undervalued by the market; they should be purchased. 
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5.  Put-call parity states the first relation generally, and the second in a Black-Scholes 

environment: 

𝑝0 = 𝑐0 + 𝑋𝑒−𝑟𝑇 − 𝑆0 

𝑝0 = 𝑆0𝑁(𝑑1) −
𝑋

𝑒𝑟𝑇
𝑁(𝑑2) + 𝑋𝑒−𝑟𝑇 − 𝑆0 

With some algebra, and given the symmetry of the normal distribution about its mean, we 

rewrite as follows: 

𝑝0 = 𝑆0(𝑁(𝑑1) − 1) −
𝑋

𝑒𝑟𝑇
(𝑁(𝑑2) − 1) = 𝑋𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1) 

 

6.  We need to find the roots of the equation: 

𝑓(𝜎) = 𝑆0𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2) = 0 
with S0 = 50, r = .06, and T = .5. We let X and c0  assume the values given in parts a through e, 

respectively. One can merely substitute for variance σ by testing the equation to see if f(σ) is 

approximately equal to zero for many choices of σ until one finds a good approximation. 

Otherwise, one can use either the Bisection Method or the Newton Raphson Method. The values 

for σ are obtained applying one of these two methods through a process of substitution and 

iteration until the desired accuracy is obtained. 

                     Implied volatilities are given as follows: 

    a. X = 40;  = .2579 

    b. X = 45;  = .3312 

    c. X = 50;  = .2851 

    d. X = 55;  = .2715 

    e. X = 60;  = .2704 

 

7.   a. d1 = .6171; d2 = .1171; N(d1) = .7314; N(d2) = .5466 

    c0 = 11.06; with put-call parity: p0 = 4.35 

b.  Use X=30; d1 = .9254; d2 = .4254; N(d2) = .6647 

In section 5.4.3 we showed that P(S1 < 30) = 1 - P(S1 > 30) = 1 – N(d2) = .3353. 
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Appendix 10.A: Solving the Black-Scholes Differential Equation 

 

The following is the Black-Scholes differential equation: 

 
𝜕𝑉

𝜕𝑡
=  𝑟𝑉 − 𝑟𝑆

𝜕𝑉

𝜕𝑆
−

1

2
𝜎2𝑆2  

𝜕2𝑉

𝜕𝑆2
, 

 

generalized somewhat to value any applicable derivative V rather than just a call c. In order to 

solve for V = V(S,t), the value of the derivative, one also needs to be given a boundary value. 

This means that the value of the derivative must be known at some fixed time T; that is, V(S,T) is 

a given function of S and T. With this information, one can solve for the value V(S,t) at any time 

t. Here are the ideas of the proof in a nutshell. One changes variables from V, S, and t to the new 

variables u,y, and τ in two separate procedures so that the Black-Scholes Differential Equation 

simplifies to the differential equation: 

 

𝜕𝑢

𝜕𝜏
=

𝜕2𝑢

𝜕𝑦2
. 

 

This equation is the classical heat equation, whose solution is well-known. One then changes 

back to the original variables to obtain the solution. This solution will be in integral form. We 

will then solve for the special case of a European call. In this case, it will turn out that the 

integral solution will be able to be expressed in terms of the cumulative normal density function. 

Now for the details. We start the solution process by first changing variables to replace t, S and 

V with τ, y, and v:  

 

 =
1

2
𝜎2(𝑇 − 𝑡) ;  𝑡 = 𝑇 −  



1
2 𝜎2

 

𝑦 =  ln
𝑆

𝑋
 ;  𝑆 = 𝑋𝑒𝑦 

 

𝑣(𝑦(𝑆), 𝜏(𝑡)) =
𝐶(𝑆, 𝑡)

𝑋
; 𝑉(𝑆, 𝑡) =  𝑋𝑣 (ln (

𝑆

𝑋
) ,

1

2
𝜎2(𝑇 − 𝑡)). 

 

The following derivatives follow from the first two left-hand equations above: 

 
𝜕

𝜕𝑡
=  −

1

2
𝜎2 ; 

𝜕

𝜕𝑆
= 0; 

𝜕𝑦

𝜕𝑡
= 0 ; 

𝜕𝑦

𝜕𝑆
=  

1

𝑆
  

 

 Next, we use the Chain Rule to rewrite the Black-Scholes equation in terms of v and its 

partial derivatives with respect to y and τ: 

 
𝜕𝑉

𝜕𝑆
=  

𝜕(𝑋𝑣)

𝜕𝑦
 
𝜕𝑦

𝜕𝑆
+  

𝜕(𝑋𝑣)

𝜕
 
𝜕

𝜕𝑆
 =  𝑋

𝜕𝑣

𝜕𝑦

1

𝑆
+  0 =

𝑋

𝑆
 
𝜕𝑣

𝜕𝑦
 

𝜕𝑉

𝜕𝑡
=  

𝜕(𝑋𝑣)

𝜕𝑦
 
𝜕𝑦

𝜕𝑡
+  

𝜕(𝑋𝑣)

𝜕
 
𝜕

𝜕𝑡
= 0 − 𝑋

𝜕𝑣

𝜕

1

2
𝜎2 =  −

1

2
𝜎2𝑋

𝜕𝑣

𝜕
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𝜕2𝑉

𝜕𝑆2
 =

𝜕 (
𝑋
𝑆  

𝜕𝑣
𝜕𝑦

)

𝜕𝑆
=

𝜕 (
𝑋
𝑆 )

𝜕𝑆

𝜕𝑣

𝜕𝑦
+

𝑋

𝑆

𝜕 ( 
𝜕𝑣
𝜕𝑦

)

𝜕𝑆
= −

𝑋

𝑆2
(

𝜕𝑣

𝜕𝑦
) +  

𝑋

𝑆
(

𝜕2𝑣

𝜕𝑦2
  

𝜕𝑦

𝜕𝑆
) =  

𝑋

𝑆2
(

𝜕2𝑣

𝜕𝑦2
−

𝜕𝑣

𝜕𝑦
) 

 

 Now, we will substitute these equations into the Black-Scholes differential equation: 

 

−
1

2
𝜎2𝑋

𝜕𝑣

𝜕
=  𝑟𝑋𝑣 − 𝑟𝑆

𝑋

𝑆

𝜕𝑣

𝜕𝑦
−

1

2
𝜎2𝑆2

𝑋

𝑆2
(

𝜕2𝑣

𝜕𝑦2
−

𝜕𝑣

𝜕𝑦
) 

 

Simplify and divide both sides by 
1

2
𝜎2𝑋: 

 

−
𝜕𝑣

𝜕
=  

2𝑟

𝜎2
𝑣 −

2𝑟

𝜎2

𝜕𝑣

𝜕𝑦
− (

𝜕2𝑣

𝜕𝑦2
−

𝜕𝑣

𝜕𝑦
) 

𝜕𝑣

𝜕
=  

−2𝑟

𝜎2
𝑣 + (

2𝑟

𝜎2
− 1)

𝜕𝑣

𝜕𝑦
+

𝜕2𝑣

𝜕𝑦2
 

 

However, our equation still includes terms involving v and v/y , and we still need to employ an 

additional changes of variables in order to obtain the desired classic heat equation . We will 

again employ a change of variables, writing v as a function of u: 

 

𝑣(𝑦, 𝜏) =  𝑒𝑦+𝛽𝑢(𝑦, 𝜏), 

 

where α and β are constants to be chosen shortly. We differentiate as follows: 

 
𝜕𝑣

𝜕
=  𝛽𝑒𝑦+𝛽𝑢 + 𝑒𝑦+𝛽

𝜕𝑢

𝜕
 

𝜕𝑣

𝜕𝑦
=  𝛼𝑒𝑦+𝛽𝑢 + 𝑒𝑦+𝛽

𝜕𝑢

𝜕𝑦
 

𝜕2𝑣

𝜕𝑦2
=  𝛼2𝑒𝑦+𝛽𝑢 + 2𝛼𝑒𝑦+𝛽

𝜕𝑢

𝜕𝑦
+ 𝑒𝑦+𝛽

𝜕2𝑢

𝜕𝑦2
 

 

 We will substitute these three derivatives and the expression for v into our already 

transformed Black-Scholes equation: 

  

𝛽𝑒𝑦+𝛽𝑢 + 𝑒𝑦+𝛽
𝜕𝑢

𝜕

=  
−2𝑟𝑓

𝜎2
𝑒𝑦+𝛽𝑢 + (

2𝑟

𝜎2
− 1) (𝛼𝑒𝑦+𝛽𝑢 + 𝑒𝑦+𝛽

𝜕𝑢

𝜕𝑦
) + 𝛼2𝑒𝑦+𝛽𝑢

+ 2𝛼𝑒𝑦+𝛽
𝜕𝑢

𝜕𝑦
+ 𝑒𝑦+𝛽

𝜕2𝑢

𝜕𝑦2
 

 

Divide by 𝑒𝑦+𝛽 to obtain: 
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𝛽𝑢 +
𝜕𝑢

𝜕
=  

−2𝑟

𝜎2
𝑢 + (

2𝑟

𝜎2
− 1) (𝑢 +

𝜕𝑢

𝜕𝑦
) + 𝛼2𝑢 + 2𝛼

𝜕𝑢

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2
, 

 

Combine like terms to obtain our second revision of the Black-Scholes differential equation: 

 

𝜕𝑢

𝜕
= [ 

−2𝑟

𝜎2
+ (

2𝑟

𝜎2
− 1) 𝛼 + 𝛼2 − 𝛽] 𝑢 + (

2𝑟

𝜎2
− 1 + 2𝛼)

𝜕𝑢

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2
 

 

Observe that if we choose   

 

𝛼 =
1

2
−

𝑟

𝜎2
, 

 

then the coefficient for the term ∂u/∂y will equal zero, and if we furthermore choose  

 

𝛽 =
2𝑟

𝜎2
− (

2𝑟

𝜎2
− 1) 𝛼 − 𝛼2 = −

𝑟 
2

𝜎4
−

𝑟

𝜎2
−

1

4
, 

 

then the coefficient for the term u will equal zero. With these choices for the constants α and β, 

we obtain our first main objective: 

 

𝜕𝑢

𝜕𝜏
=

𝜕2𝑢

𝜕𝑦2
. 

 

 Next, we solve this classic heat equation. Recall that we also need to be given the initial 

boundary condition. So, we need to know how to transform the boundary condition V(S,T) to the 

function u in terms of y and the proper choice of τ. Since  =
1

2
𝜎2(𝑇 − 𝑡), then when t = T, τ = 

0. Since (𝑆, 𝑇) =  𝑋𝑣 (𝑙𝑛 (
𝑆

𝑋
) , 0) = 𝑋𝑣(𝑦, 0), v(y,0) = eαyu(y,0), and S = Xey, then  

 

𝑢(𝑦, 0) =
𝑉(𝑋𝑒𝑦, 𝑇)

𝑋𝑒𝛼𝑦
. 

 

The solution of the heat equation u(y,τ) in terms of the boundary condition u(y,0) is 

 

(32)    𝑢(𝑦, 𝜏) =
1

√4𝜋𝜏
∫ 𝑢(𝑥, 0)𝑒−

(𝑦−𝑥)2

4𝜏
∞

−∞
𝑑𝑥. 

 

To prove that this solution is correct, we find5 

 

 

5 The differentiation operation was brought inside the integral sign, which is justified as long as the initial condition 

u(x,0) is a reasonably nice function. This will always be the case for any initial conditions encountered in this text. 
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𝜕𝑢

𝜕𝜏
=

𝜕

𝜕𝜏
[

1

√4𝜋𝜏
∫ 𝑢(𝑥, 0)𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

𝑑𝑥] =
1

√4𝜋
∫ 𝑢(𝑥, 0)

𝜕

𝜕𝜏
[

1

√𝜏
𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

]𝑑𝑥 

=
1

√4𝜋
∫ 𝑢(𝑥, 0)[

−1

2𝜏3/2
+

(𝑦 − 𝑥)2

4𝜏5/2
]𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

𝑑𝑥

=
−1

2𝜏√4𝜋𝜏
∫ 𝑢(𝑥, 0)[1 −

(𝑦 − 𝑥)2

2𝜏
]𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

𝑑𝑥, 

and 

 

𝜕2𝑢

𝜕𝑦2
=

1

√4𝜋𝜏
∫ 𝑢(𝑥, 0)

𝜕2

𝜕𝑦2
[𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

]𝑑𝑥 =
−1

2𝜏√4𝜋𝜏
∫ 𝑢(𝑥, 0)

𝜕

𝜕𝑦
[(𝑦 − 𝑥)𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

]𝑑𝑥 

=
−1

2𝜏√4𝜋𝜏
∫ 𝑢(𝑥, 0)[1 −

(𝑦 − 𝑥)2

2𝜏
]𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

𝑑𝑥 =
𝜕𝑢

𝜕𝜏
 

 

as we wished to show. We also must show that the solution approaches u(y,0) in the limit as 

τ→0. So, we need to show that6 

 

lim
𝜏→0

1

√4𝜋𝜏
∫ 𝑢(𝑥, 0)𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

𝑑𝑥 = 𝑢(𝑦, 0). 

 

 Make the change of variables 𝑧 =
𝑥−𝑦

√2𝜏
, so that 𝑥 = 𝑦 + 𝑧√2𝜏, and 𝑑𝑥 = 𝑑𝑧√2𝜏. The left 

hand limit above becomes 

 

lim
𝜏→0

1

√2𝜋
∫ 𝑢(𝑦 + 𝑧√2𝜏, 0)𝑒−

𝑧2

2

∞

−∞

𝑑𝑧. 

 

We will assume that the boundary condition grows no faster than an exponential of the form 

AeB|z| where A and B are positive constants. This is a reasonable assumption since no real-life 

security will grow faster than such a rate. Thus, the entire function inside the integral gets small 

very rapidly once |z| gets large. So, most of the contribution to the value of the integral occurs in 

the range of integration from –N to N with N a large positive number. We can closely 

approximate the limit above by 

 

 

6 The function 
1

√4𝜋𝜏
𝑒−

𝑥2

4𝜏  is an example of what is known as an approximate identity, and the integral is an example 

of what is called the convolution of the approximate identity with the function u(x,0). It is a well-known theorem in 

mathematics that in the limit as τ approaches 0, the convolution above approaches u(y,0). However, we will prove 

this result for our special case.   
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lim
𝜏→0

1

√2𝜋
∫ 𝑢(𝑦 + 𝑧√2𝜏)𝑒−

𝑧2

2

𝑁

−𝑁

𝑑𝑧. 

 

 The quantity 𝑦 + 𝑧√2𝜏 will vary from 𝑦 − 𝑁√2𝜏 to 𝑦 + 𝑁√2𝜏 as s ranges over the limits 

of integration from –N to N. As τ→0 and eventually gets much smaller than 1/N2, the quantity 

𝑦 + 𝑧√2𝜏 will be approximately equal to y as z ranges over the limits of integration from –N to 

N. Thus, 𝑢(𝑦 + 𝑧√2𝜏) ≈ 𝑢(𝑦) over this range of integration as long as u is a continuous 

function. This means that 

 

 
1

√2𝜋
∫ 𝑢(𝑦 + 𝑧√2𝜏)𝑒−

𝑧2

2

𝑁

−𝑁

𝑑𝑠 ≈
1

√2𝜋
∫ 𝑢(𝑦)𝑒−

𝑧2

2

𝑁

−𝑁

𝑑𝑧 = 𝑢(𝑦) [
1

√2𝜋
∫ 𝑒−

𝑧2

2

𝑁

−𝑁

𝑑𝑧] . 

 

But, the integral 

1

√2𝜋
∫ 𝑒−

𝑧2

2

𝑁

−𝑁

𝑑𝑧 ≈
1

√2𝜋
∫ 𝑒−

𝑧2

2

∞

−∞

𝑑𝑧 = 1, 

 

since N is very large and the right-hand integral is the total area under the standard normal curve. 

The approximations above get better and better as N→∞ and τ→0. We conclude that 

 

lim
𝜏→0

 
1

√4𝜋𝜏
∫ 𝑢(𝑥, 0)𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

𝑑𝑥 = 𝑢(𝑦, 0), 

 

as we wished to show. 

 Our result allows us to find the value of any derivative that is based on an underlying 

security S that follows a Brownian motion process with drift. One only needs to substitute the 

specific boundary conditions for the derivative, to obtain its value at any time t. As an 

illustration, we will price a European call option. For a call option, it is customary to denote its 

value at time t in terms of the price of the stock S by c(S,t) rather than V(S,t). Suppose that X is 

its exercise price, and T is its expiration date. If S >X at expiration time T, then the call option 

will be worth S-X, since the option holder can buy the stock for X and sell it for S. If S ≤ X at 

time T, then the option holder should not exercise the option, making the value of the option 

simply equal to 0. This shows that the boundary condition for the call option at time T is c(S,T) = 

MAX(S-X,0). In order to value the price of the option at any other time t, it turns out that it is 

easier to first solve the problem for u as a function of y and τ. Afterwards, one can convert the 

solution to c as a function of S and t. We will need to find the boundary condition for the 

function u. Since 𝑢(𝑦, 0) =
𝑐(𝑋𝑒𝑦,𝑇)

𝑋𝑒𝛼𝑦  as we showed earlier, then 

 

𝑢(𝑦, 0) =
MAX(𝑋𝑒𝑦 − 𝑋, 0)

𝑋𝑒𝛼𝑦
= MAX(𝑒(1−𝛼)𝑦 − 𝑒−𝛼𝑦, 0). 

 

Substituting this initial condition into our integral solution (32), we obtain: 
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𝑢(𝑦, 𝜏) =
1

√4𝜋𝜏
∫ max(𝑒(1−𝛼)𝑥 − 𝑒−𝛼𝑥, 0) 𝑒−

(𝑦−𝑥)2

4𝜏

∞

−∞

𝑑𝑥. 

 

 Observe that e(1-α)x-e-αx ≥ 0 means e-αx(ex-1) ≥ 0, or ex-1 ≥ 0, or ex ≥ 1, or x ≥ 0, So, the 

solution becomes: 

 

𝑢(𝑦, 𝜏) =
1

√4𝜋𝜏
∫ [𝑒(1−𝛼)𝑥 − 𝑒−𝛼𝑥]𝑒−

(𝑦−𝑥)2

4𝜏

∞

0

𝑑𝑥. 

 

 The next few steps of the derivation involve some algebraic manipulation and a couple 

changes of variables in order to express the integral above in terms of the cumulative distribution 

function for the standard normal curve. Using completion of the square and some algebraic 

manipulations, we can write: 

 

(1 − 𝛼)𝑥 −
(𝑦 − 𝑥)2

4𝜏
= −

1

4𝜏
[𝑥 − (𝑦 + 2(1 − 𝛼)𝜏)]2 + (1 − 𝛼)𝑦 + (1 − 𝛼)2𝜏 

 

and 

 

−𝛼𝑥 −
(𝑦 − 𝑥)2

4𝜏
= −

1

4𝜏
[𝑥 − (𝑦 − 2𝛼𝜏)]2 − 𝛼𝑦 + 𝛼2𝜏. 

 

So, the solution now becomes: 

 

𝑢(𝑦, 𝜏) =
1

√4𝜋𝜏
𝑒(1−𝛼)𝑦+(1−𝛼)2𝜏 ∫ 𝑒−

1
4𝜏

[𝑥−(𝑦+2(1−𝛼)𝜏)]2

∞

0

𝑑𝑥

−
1

√4𝜋𝜏
𝑒−𝛼𝑦+𝛼2𝜏 ∫ 𝑒−

1
4𝜏

[𝑥−(𝑦−2𝛼𝜏)]2

∞

0

𝑑𝑥. 

 

 In the first integral, make the change of variables, 𝑧 =
1

√2𝜏
[𝑥 − (𝑦 + 2(1 − 𝛼)𝜏)]. In the 

second integral, make the change of variables, 𝑧 =
1

√2𝜏
[𝑥 − (𝑦 − 2𝛼𝜏)]. This gives: 

 

𝑢(𝑦, 𝜏) = 𝑒(1−𝛼)𝑦+(1−𝛼)2𝜏 1

√2𝜋
∫ 𝑒−

1

2
𝑧2∞

−
1

√2𝜏
(𝑦+2(1−𝛼)𝜏)

𝑑𝑧 − 𝑒−𝛼𝑦+𝛼2𝜏 1

√2𝜋
∫ 𝑒−

1

2
𝑧2∞

−
1

√2𝜏
(𝑦−2𝛼𝜏)

𝑑𝑧. 

 

Recall that the cumulative distribution function for the standard normal curve is 

 

𝑁(𝑦) =
1

√2𝜋
∫ 𝑒−

1
2

𝑧2

𝑦

−∞

𝑑𝑧 =
1

√2𝜋
∫ 𝑒−

1
2

𝑧2

∞

−𝑦

𝑑𝑧, 
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where the second equality follows because of the symmetry of the standard normal curve. Thus, 

the solution can be expressed as: 

 

𝑢(𝑦, 𝜏) = 𝑒(1−𝛼)𝑦+(1−𝛼)2𝜏𝑁 (
1

√2𝜏
[𝑦 + 2(1 − 𝛼)𝜏]) − 𝑒−𝛼𝑦+𝛼2𝜏𝑁 (

1

√2𝜏
[𝑦 − 2𝛼𝜏]). 

 

 We are now ready to obtain the solution for price of the option c(S,t). Since c(S,t) = 

Xv(y,τ) = Xeαy+βτu(y,τ), S = Xey, and y = ln(S/X), then 

 

𝑐 = 𝑆𝑒[𝛽+(1−𝛼)2]𝜏𝑁 (
1

√2𝜏
[𝑙𝑛 (

𝑆

𝑋
) + 2(1 − 𝛼)𝜏)]) − 𝑋𝑒(𝛽+𝛼2)𝜏𝑁 (

1

√2𝜏
[𝑙𝑛 (

𝑆

𝑋
) + 2𝛼𝜏)]). 

 

Since 𝛼 =
1

2
−

𝑟

𝜎2
 and 𝛽 = −

𝑟 
2

𝜎4
−

𝑟

𝜎2
−

1

4
, it is easy to check that β + (1-α)2 = 0 and 𝛽 + 𝛼2 =

−
2𝑟

𝜎2. Using these results and the fact that 𝜏 =
1

2
𝜎2(𝑇 − 𝑡) results in 

 

(33)                   𝑐(𝑆, 𝑡) = 𝑆𝑁 (
𝑙𝑛(

𝑆

𝑋
)+(𝑟+

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
) − 𝑋𝑒−𝑟(𝑇−𝑡)𝑁 (

𝑙𝑛(
𝑆

𝑋
)+(𝑟−

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
). 

 

 Using the customary notation: 

 

𝑑1 =
𝑙𝑛 (

𝑆0

𝑋 ) + (𝑟 +
1
2 𝜎2)𝑇

𝜎√𝑇
 

 

𝑑2 =
𝑙𝑛 (

𝑆0

𝑋 ) + (𝑟 −
1
2 𝜎2) 𝑇

𝜎√𝑇
, 

 

we can finally express the solution at time t = 0 in the form 

 

𝑐0 = 𝑆0𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2). 
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Appendix 10.B: z-table 

 
The Normal Density Function 

The z-Table 

  z             0.00      0.01      0.02      0.03      0.04      0.05      0.06     0.07       0.08     0.09  

  0.0   .0000   .0040   .0080   .0120   .0159   .0199   .0239   .0279   .0319   .0358  

  0.1   .0398   .0438   .0478   .0517   .0557   .0596   .0636   .0675   .0714   .0753  

  0.2   .0793   .0832   .0871   .0909   .0948   .0987   .1026   .1064   .1103   .1141  

  0.3   .1179   .1217   .1255   .1293   .1331   .1368   .1406   .1443   .1480   .1517  

  0.4   .1554   .1591   .1628   .1664   .1700   .1736   .1772   .1808   .1844   .1879  

  0.5   .1915   .1950   .1985   .2019   .2054   .2088   .2123   .2157   .2190   .2224  

  0.6   .2257   .2291   .2324   .2356   .2389   .2421   .2454   .2486   .2517   .2549  

  0.7   .2580   .2611   .2642   .2673   .2703   .2734   .2764   .2793   .2823   .2852  

  0.8   .2881   .2910   .2939   .2967   .2995   .3023   .3051   .3078   .3106   .3133  

  0.9   .3159   .3186   .3212   .3238   .3264   .3289   .3315   .3340   .3365   .3389  

  1.0   .3413   .3437   .3461   .3485   .3508   .3531   .3554   .3577   .3599   .3621  

  1.1  .3643   .3665   .3686   .3708   .3729   .3749   .3770   .3790   .3810   .3830  

  1.2   .3849   .3869   .3888   .3906   .3925   .3943   .3962   .3980   .3997   .4015  

  1.3   .4032   .4049   .4066   .4082   .4099   .4115   .4131   .4147   .4162   .4177  

  1.4   .4192   .4207   .4222   .4236   .4251   .4265   .4279   .4292   .4306   .4319  

  1.5   .4332   .4345   .4357   .4370   .4382   .4394   .4406   .4418   .4429   .4441  

  1.6   .4452   .4463   .4474   .4484   .4495   .4505   .4515   .4525   .4535   .4545  

  1.7   .4554   .4564   .4573   .4582   .4591   .4599   .4608   .4616   .4625   .4633  

  1.8   .4641   .4649   .4656   .4664   .4671   .4678   .4686   .4693   .4699   .4706  

  1.9   .4713   .4719   .4726   .4732   .4738   .4744   .4750   .4756   .4761   .4767  

  2.0   .4772   .4778   .4783   .4788   .4793   .4798   .4803   .4808   .4812   .4817  

  2.1   .4821   .4826   .4830   .4834   .4838   .4842   .4846   .4850   .4854   .4857  

  2.2   .4861   .4864   .4868   .4871   .4875   .4878   .4881   .4884   .4887   .4890  

  2.3   .4893   .4896   .4898   .4901   .4904   .4906   .4909   .4911   .4913   .4916  

  2.4   .4918   .4920   .4922   .4925   .4927   .4929   .4931   .4932   .4934   .4936  

  2.5   .4938   .4940   .4941   .4943   .4945   .4946   .4948   .4949   .4951   .4952  

  2.6   .4953   .4955   .4956   .4957   .4959   .4960   .4961   .4962   .4963   .4964  

  2.7   .4965   .4966   .4967   .4968   .4969   .4970   .4971   .4972   .4973   .4974  

  2.8   .4974   .4975   .4976   .4977   .4977   .4978   .4979   .4979   .4980   .4981  

  2.9   .4981   .4982   .4982   .4983   .4984   .4984   .4985   .4985   .4986   .4986  

  3.0   .4986   .4987   .4987   .4988   .4988   .4989   .4989   .4989   .4990   .4990  

 
 

The areas given here are from the mean (zero) to z standard deviations to the right of the mean. 

To get the area to the left of z, simply add .5 to the value given on the table. 
 


