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Chapter 11: The Greeks, Dividend Adjustments and Early Exercise 
 

A. The Greeks 

 Levels of sensitivity of the Black-Scholes model (See Black and Scholes [1972]) to each 

of its 5 inputs are colloquially known as the Greeks. The first of these Greeks is the option delta, 

or N(d1), which is the instantaneous sensitivity of the option value to changes in the stock price:1 
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This sensitivity means that the call option's value will change by approximately N(d1) for each 

unit of change in the underlying stock price. This delta can be interpreted as the number of shares 

to short for every purchased call in order to maintain a portfolio that is hedged to changes in the 

underlying stock price. A portfolio delta is simply a weighted average (weights are provided by 

portfolio proportions) of the option deltas in the portfolio. A delta-neutral portfolio means that 

the portfolio of options and underlying stock has a weighted average delta equal to zero so that 

its value is invariant with respect to the underlying stock price.  

 However, as the underlying stock's price changes over time, and, as the option's time to 

maturity diminishes, this hedge ratio will change; the option delta only holds exactly for an 

instant. That is, because this delta is based on a partial derivative with respect to the share price, 

it holds exactly only for an infinitesimal change in the share price; it holds only approximately 

for finite changes in the share price. This delta only approximates the change in the call value 

resulting from a change in the share price because any change in the price of the underlying 

shares would lead to a change in the delta itself: 
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This change in delta resulting from a change in the share price is known as gamma. However, 

again, this change in delta resulting from a finite share price change is only approximate.  

 Since each call and put option has a date of expiration, calls and puts are said to amortize 

over time. As the date of expiration draws nearer (T gets smaller), the value of the European call 

(and put) option might be expected to decline as indicated by a positive theta:2 
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1 Appendix B to this chapter derives the delta and gamma expressions. 

2 This expression is derived in end-of-chapter Exercise 7.11.a. More importantly, its relation to the all-important 

Black-Scholes differential equation 11 in Section 7.3.2 is described in Exercise 7.11.c. Many traders refer to theta by 

its negative value, emphasizing that the value of the option decays through the passage of time. Theta is also known 

as amortization. Many traders will also divide the annual theta by 252, the number of trading days in a year in order 

to reflect the daily amortization. 
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By convention, traders often refer to theta as a negative number since option values tend to 

decline as we move forward in time (T becomes smaller). In addition, many traders seek to 

maintain portfolios that are simultaneously neutral with respect to delta, gamma and theta. 

 Vega, which actually is not a Greek letter, measures the sensitivity of the option price to 

the underlying stock's standard deviation of returns (vega is sometimes known as either kappa or 

zeta). One might expect the call option price to be directly related to the underlying stock's 

standard deviation: 
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Although the Black-Scholes model assumes that the underlying stock volatility is constant over 

time, in reality, as we discussed in the previous section, volatility can and does shift. Vega 

provides an estimate for the impact of a volatility shift on a particular option’s value.  

A trader should expect that the value of the call would be directly related to the riskless 

return rate and inversely related to the call exercise price: 
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The option rho can be very useful in economies with very high or volatile interest rates, though 

most traders of “plain vanilla" options (standard options to buy or sell without complications) do 

not concern themselves much with it under typical interest rate regimes. Similarly, most traders 

of "plain vanilla" options ignore call value sensitivities to exercise prices. 

 

Greeks Calculations for Calls 

 Here, we will calculate the Greeks for the call illustration from the previous section 7.4 

with the following parameters: 

 

T = .5  r = .10   = .41147 X = 80  S0 =  75 c0 =  8.20 
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Note that traders sometimes change the sign for theta, actually using the derivative c/t where T 

is replaced by (T-t) and t represents time as it approaches T. More generally, a single unit 

increase in the relevant parameter changes the Black-Scholes estimated call value by an amount 

approximately equal to the associated "Greek." 

 

Greeks Calculations for Puts 

 If Put-Call Parity holds along with Black-Scholes assumptions given above, the Black-

Scholes put value from our example in Section 7.5.1 is computed as follows: 
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In our numerical example above, the put would be worth 9.298 if its exercise terms are identical 

to those of the call. Put sensitivities formulas and calculations for our example are as follows:3 
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3 The put delta and gamma are derived in Exercise 7.10. 
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Again, a single unit increase in the relevant parameter changes the Black-Scholes estimated put 

value by an amount approximately equal to the associated "Greek." 

 

B. The Black-Scholes Model and Dividend Adjustments 

 The Black-Scholes model has an enormous number of extensions. Here, we will first 

consider stock options in scenarios in which certain standard Black-Scholes assumptions are 

violated. Relaxation of assumptions allows the model to be applied to options written under 

varying circumstances and will have a number interesting implications. Here, we will discuss a 

few of the many extensions of the model, beginning with adjustments for stock dividends. 

 

The European Known Dividend Model 

A dividend-protected call option allows for the option holder to receive the underlying 

stock and any dividends paid during the life of the option in the event of exercise. In practice, 

most options are not dividend protected. In effect, a dividend payment diminishes the value of 

the underlying stock by the value of the dividend on the ex-dividend date.4 If a stock underlying 

such a European call option were to pay a known dividend of amount D, with ex-dividend date tD 

< T, the Black-Scholes hedge portfolio and differential equation become: 

 

𝑐𝑡 = 𝛾𝑠,0(𝑆0 − 𝐷𝑒−𝑟𝑡𝐷) + 𝛾𝑏,0𝐵0, 

 

𝜕𝑐

𝜕𝑡
= 𝑟𝑐 − 𝑟(𝑆0 − 𝐷𝑒−𝑟𝑡𝐷)
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With the boundary condition cT =  )(,0
)(

XDeSMAX DtTr

T −−
− , the European Known Dividend 

Model can be used to evaluate the option as follows: 
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 This is among the simplest of the dividend-adjusted Black-Scholes models. Multiple 

dividend payments produce the boundary condition cT = 




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Di , where 

the firm makes a dividend payments to shareholders at each of n points in time tDi prior to time T. 

 
4 A shareholder holding the stock on the ex-dividend date receives the dividend. Shareholders obtaining the stock 

after the ex-dividend date do not. Also, when underlying stock returns volatility is computed, dividends are excluded 

from the calculations. 
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Thus, generally, the analyst simply subtracts the present value of the known dividend payment 

(or payments) prior to the option expiry from the stock's price. However, this model still assumes 

that the call is of the European variety, so that the call will never be exercised early. 

Nevertheless, holders of non-protected calls will not receive dividends if they obtain the 

underlying shares after the ex-dividend date. If this model should be used to value American 

calls on dividend-paying stocks, it will tend to undervalue these American calls that cannot be 

exercised on ex-dividend dates.  

 

Modeling American Calls 

 An American call on a non-dividend paying stock will never be exercised before its 

expiration date T. Consider Table 10.1, which depicts a scenario in which an investor can choose 

whether to exercise his American call now prior to its expiration at time T. In effect, the investor 

can choose between two portfolios A and B where Portfolio A consists of one call that is not 

exercised before expiry and the present value of X dollars Xe-rT retained from not exercising the 

call. If the call is exercised before expiry, the portfolio, labeled as Portfolio B, will consist of one 

share of stock, which is purchased with the exercise money X. The last two columns of this table 

give expiration date portfolio values, depending on the underlying stock price ST relative to the 

call exercise price X. Since the sum value of the call and exercise money is always either equal to 

or greater than the value of the stock on the expiration date (VAT  VBT), the call should never be 

exercised early. That is, Portfolio A is always preferred to Portfolio B. 

 However, Table 2 demonstrates that premature exercise of an American call might occur 

when its underlying stock pays a dividend, where tD (tD   T) is the time of the premature 

exercise. We will demonstrate shortly that this premature exercise will occur only on the ex-

dividend date, and only when the dividend amount is sufficiently high relative to some critical 

ex-dividend date stock price StD
*. 

 

Portfolio Value at Time T 

Portfolio Current value XST   XST   

A rTXec −+0   
0 + X  ( ) XXST +−  

B 
0S
  TS  TS  

Note that:  
BTAT VV   BTAT VV =  

Table 10.1: Exercising American Calls Early in the Absence of Dividends 

 

Portfolio Value at Time T     

Port. Current Value ST  >  X ST    X 

A rTXec −+0  XXST +−  X  

B Drt
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−
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)( DtTr

T DeS
−
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T DeS
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Table 2: Exercising American Calls Early in the Presence of Dividends 

 

Black's Pseudo-American Call Model 
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This model (Black [1975]) incorporates the European Known Dividend model with the 

choice of early exercise. Recall that an American option should never be exercised if the stock 

pays no dividend. Similarly it can be shown that if an American call is to be exercised early, it 

will be exercised only at the instant (or immediately before) the stock goes ex-dividend. If, on 

the ex-dividend date tD, the time value associated with exercise money, X[1-e-r(T-tD)] is less than 

the dividend payment, D, the call is never exercised early. Otherwise it will be optimal to 

exercise early if the ex-dividend underlying stock price is sufficiently high. Black's model states 

that the call's value c0 is determined by: 
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where 𝑐0
∗ is the call's value assuming it is exercised immediately before the stock’s ex-dividend 

date and 𝑐0
∗∗ is the call's value assuming the option is held until it expires. Observe from the 

formula that the call's actual value, c0, will be the larger of 𝑐0
∗ or 𝑐0

∗∗. Since the call's value is the 

larger of 𝑐0
∗ and 𝑐0

∗∗, and these values are both determined at time zero, the formula implies that 

the American call value is based on an exercise decision at time zero. That is, even though we do 

not decide whether to exercise early until the ex-dividend date, the formula implies that the call 

value is based on a decision today on whether to exercise on the ex-dividend date. 

 

Illustration: Calculating the Value of an American Call on Dividend-Paying Stock 

 Suppose that we wish to calculate the value of a 6-month X = $45 American call on a 

share of stock that is currently selling for $50. The stock is expected to go ex-dividend on a $5 

payment in three months, and not again until after the option expires. The standard deviation of 

returns on the underlying stock is .4 and the riskless return rate is 3%. What is the call worth 

today assuming: 

a. the European Known Dividend model? 

b. Black’s Pseudo-American Call model? 

 

   a. Under the European Known Dividend model, the value of the call is $5.39, calculated as 

follows: 

 

𝑐0 = (50 − 5𝑒−.03×.25) × .5782 −
45

𝑒 .03×.5 × .4660 = 5.39, 

 

where 

 

𝑑1 =
ln (

50 − 5𝑒−.03×.25

45
) + (. 03 +

1
2 × .16) × .5

. 4 × √. 5
= .1974; 𝑁(𝑑1) =  .5782 

 

𝑑2 = .1974 − .4 × √. 5 = −.0855; 𝑁(𝑑2) =  .4660 

 

   b. To use Black's Pseudo-American call formula, we will first determine whether dividend 
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exceeds the ex-dividend date time value associated with exercise money: 5 > 45[1-e-.03(.5-.25)] = 

.336. In other words, we check to see if we would lose more than $5 on interest from our 

exercise money. Since the dividend does exceed this value, we will calculate the value of the call 

assuming that we exercise it just before the underlying stock goes ex-dividend in 3 months, while 

it trades with dividend: 

 

𝑐0 = 50 × .7468 −
45

𝑒 .03×.25
× .6788 = 7.02, 

 

where 

 

𝑑1 =
ln (

50
45

) + (. 03 +
1
2 × .16) × .25

. 4 × √. 25
= .6643; 𝑁(𝑑1) =  .7468 

 

𝑑2 = .6643 − .4 × √. 25 = .4643; 𝑁(𝑑2) =  .6788 

 

Under Black's Pseudo-American call formula, we find that the value of the call is MAX[5.39, 

7.02], or 7.02. 

 

C. Merton’s Continuous Leakage Formula 

 In some instances, dividends might be considered to be paid on a continuous basis. For 

example, many options on indices (index options) trade on portfolios whose dividend leakage, 

the rate at which continuous dividends are paid or received by a fund, can often be accounted for 

when assumed to occur continuously and without detectable seasonality given the time to option 

expiry. Other options can be traded on commodities or other assets that have costs of storage or 

other constant carry costs that are paid continuously over time. Here, we assume that the 

underlying stock follows the process below: 

 
𝑑𝑆𝑡

𝑆𝑡
= (𝜇 − 𝛿)𝑑𝑡 + 𝜎𝑑𝑍𝑡 

 

where δ is the periodic dividend yield (See Merton [1973]). The self-financing portfolio in this 

case has the form: 

 

𝑑𝑉𝑡 = 𝛾𝑠,𝑡𝑑𝑆𝑡 + 𝑟(𝑉𝑡 − 𝛾𝑠,𝑡𝑆𝑡)𝑑𝑡 + 𝛿𝛾𝑠,𝑡𝑆𝑡𝑑𝑡. 
 

The standard Black-Scholes differential equation for the continuous leakage model is as follows: 

 

𝜕𝑐

𝜕𝑡
= 𝑟𝑐 − (𝑟 − 𝛿)

𝜕𝑐

𝜕𝑆
𝑆 −

1

2
𝜎2𝑆0

2
𝜕2𝑐

𝜕𝑆2
 

 

This is the continuous dividend adjusted Black-Scholes differential equation. Its particular 

solution, subject to the boundary condition cT = MAX[0, ST - X] for a European call, is given as 

follows: 
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       p0 = c0  + Xe-rT - S0e
-δT 

 

Illustration: Continuous Dividend Leakage 

 Return to our earlier example where an investor is considering six-month options on a 

stock that is currently priced at $75. The exercise price of the call and put are $80 and the current 

riskless rate of return is 10% per annum. The variance of annual returns on the underlying stock 

is 16%. However, this stock will pay a continuous annual dividend at a rate of 2%. What are the 

values of these call and put options on this stock? Our first step is to find d1 and d2: 
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With N(d1) = .522 and N(d2) = .41, we value the call and put as follows:  

 

56.741.
80

522.75
5.10.

5.02.

0 =−=


−

e
ec  

 

    p0 = 7.56 + 80(.9512) - 75e-.02.5 = 9.41 

 

D. Early Option Exercise 

 First, it is important to note that an American call on a non-dividend paying stock should 

never be exercised before its expiration date. Consider portfolios A and B in Table 3, where 

Portfolio A consists of one call that is not exercised before expiry and the present value of X 

dollars Xe-rfT retained from not exercising the call. If the call is exercised at expiry, the portfolio 

consists of one share of stock. Portfolio B consists of a single share of the underlying stock: 
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Portfolio Current value XST    XST   
A Tr

eXc 1

0

−
+

  
0 + X  ( ) XXST +−  

B 
0S
  TS  TS  

Note that:  
BTAT VV   BTAT VV =  

Table 3: Portfolio Time T Value without Stock Dividends 

 

Since the sum value of the call and exercise money is always either equal to or greater than the 

value of the stock on the expiration date (VAT >VBT), the call should not be exercised early. That 

is, Portfolio A is preferred to Portfolio B. 

 However, premature exercise (i.e., exercise prior to expiry) of an American call may be 

rational when its underlying stock pays a dividend of D that is sufficiently high. Consider the 

following: 

 

Port. Current Value ST  >  X ST    X 

A XC +0
 Tr

T
fXeXS +−  

TrfXe  

B DS +0
 Tr

T
fDeS +  

Tr

T
fDeS +  

 Notice that: 
BTAT VV




 BTAT VV




 

Table 4: Portfolio Time T Value with Stock Dividends 

 

In Portfolio A, the investor retains his call and exercise money. He will exercise his call when it 

expires at time T if ST>X and earn the riskless return on his exercise money X regardless of 

whether ST  is less or greater than X. In Portfolio B, he exercises his call on the ex-dividend date, 

receiving the dividend that may be invested at the riskless rate. Whether he exercises his call 

early (on the ex-dividend date - or the instant before ex-dividend) depends on the size of the 

dividend. An extremely large dividend is likely to encourage early exercise. The call will never 

be exercised early when D < X[1-e-rT] . Generally, the call will be exercised early when its price 

on the stock ex-dividend date (Sex) is less than the current stock price minus the call exercise 

price: cex < Sex - X. In this scenario, just before the stock goes ex-dividend, owning the stock after 

paying the exercise price is worth more than the unexpired call. Regardless, an American call on 

a dividend paying stock will be exercised either at its expiration or the instant before the call 

goes ex-dividend. 

 In practice, American puts tend to be exercised more frequently than American calls. 

Early exercise of an American put is rational if the exercise money to be received at exercise 

exceeds the present value of the put left unexpired. Deep in the money puts are more likely to be 

exercised early. High interest rates and low volatilities are more likely to lead to early put 

exercise. 
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Exercises 

 

1.  The sensitivity of the call's price to changes in the underlying stock return standard deviation 

is often known as "vega," which is calculated from the following: 

     0
2

20

2
1

=



−d

e
TSc


  Vega   

Derive this equation above for vega, using the identity: 

𝑆0

𝜕𝑁(𝑑1)

𝜕𝑑1
= 𝑋𝑒−𝑟𝑇

𝜕𝑁(𝑑2)

𝜕𝑑2
 

that is derived in Appendix B to this chapter. 

 

2.  What is the gamma of a long position in a single futures contract? Why? 

 

3.  In the chapter, we stated the delta and gamma for a put. Derive both. 

 

4.   a. As the time to maturity T of a call option increases, the call value will increase. Find and 

simplify the derivative of the Black Scholes option pricing model c0 with respect to time 

to maturity (T). As we discussed in the chapter, this derivative is often known as the 

option Theta. Hint: Make use of the product and chain rules from calculus and pay close 

attention to the simplification procedure described in Appendix B to this chapter. 

      b.  As the call option approaches maturity, its value will diminish. That is, as we move 

forward through time (t), the value of the call will tend to decline as its expiration draws 

closer. Based on part a of this problem, find the rate of change of the value for the call 

with respect to time. 

      c.  The Black-Scholes options pricing model is derived from the Black-Scholes differential 

equation:   

2

2
22

2

1

S

c
SS

S

c
rrc

t

c




−




−=






 
 Using your results from part b of this problem, verify that the Black-Scholes pricing 

model is a valid solution to the Black-Scholes differential equation.
  

5.  Tiblisi Company stock currently sells for 30 per share and has an anticipated volatility 

(annual return standard deviation) equal to .6. Three-month (.25 year) call options are available 

on this stock with an exercise price equal to 25. the current riskless return rate equals .05. 

    a. Calculate the call's value. 

    b. Calculate the call's delta, gamma, theta, vega and rho. 

    c. What is the Black-Scholes implied probability that the stock price will exceed 25 three 

months from now? 

    d. What is the value of a put with the same exercise terms as the call? 

    e. What are the Greeks for the put in part d? 

 

 

6.  Consider two-year options on a stock that is currently priced at $20. The exercise price of the 

call and put are $10 and the current riskless rate of return is 4% per annum. The standard 

deviation of annual returns on the underlying stock is .8. However, this stock will pay a 
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continuous annual dividend at a rate of 5%. What are the values of these call and put options on 

this stock assuming continuous dividend leakage? 

 

7.  Consider a 6-month option on an index contract. The index is currently priced at 34,500 and 

the 6-month call has an exercise price of 35,000. The current riskless rate of return is 10% per 

annum. However, the stocks comprising the index pay dividends, resulting in a 3% continuous 

annual dividend payout by the portfolio underlying the index. The 6-month option currently sells 

for 4139.86. What is the standard deviation (within 2%) of annual returns on this index contract 

consistent with the call market price? 

 

8.  An investor has the opportunity to purchase a six-month call option for $2.00 on a stock that 

is currently selling for $30. The stock is expected to go ex-dividend in 3 months on a declared 

dividend of $2. The exercise price of the call is $35 and the current riskless rate of return is 3% 

per annum. The variance of annual returns on the underlying stock is 16%. 

    a.  Based on the European Known Dividend Model, and its current price of $2.00, does this 

option represent a good investment? 

    b.  What is the value of a European put on this stock? 

    c.  Value the American call using Black's Pseudo-American call model. 

    d.  Value the American call using the Geske-Roll-Whaley compound call model. 

 

9.  Owners of many commodities must make payments to store and maintain their inventories. In 

addition, many of these inventories suffer from depreciation or depletion. Suppose that the 

combined costs of storage and depletion for a given amount of a particular commodity (say a 

bushel of a particular variant of corn) is qSt, where q is the proportional storage and depletion 

cost per unit of the commodity per unit time. 

a. Write the Black-Scholes differential equation defining the option price path for this unit 

of corn. 

b. Write a variation of the Black-Scholes option pricing model for a call on a single bushel 

of corn. 
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Solutions 

 

1.  Differentiating the call function with respect to σ and using the chain rule we have: 
𝜕𝑐

𝜕𝜎
= 𝑆0

𝜕𝑁(𝑑1)

𝜕𝜎
− 𝑋𝑒−𝑟𝑇

𝜕𝑁(𝑑2)

𝜕𝜎
= 𝑆0

𝑑𝑁(𝑑1)

𝑑(𝑑1)

𝜕𝑑1

𝜕𝜎
− 𝑋𝑒−𝑟𝑇

𝑑𝑁(𝑑2)

𝑑(𝑑2)

𝜕𝑑2

𝜕𝜎
. 

Since 𝑑1 = 𝑑2 + 𝜎√𝑇, then  
𝜕𝑑1

𝜕𝜎
=

𝜕𝑑2

𝜕𝜎
+ √𝑇. 

This gives: 

 
𝜕𝑐

𝜕𝜎
= 𝑆0

𝑑𝑁(𝑑1)

𝑑(𝑑1)
(

𝜕𝑑2

𝜕𝜎
+ √𝑇) − 𝑋𝑒−𝑟𝑇

𝑑𝑁(𝑑2)

𝑑(𝑑2)

𝜕𝑑2

𝜕𝜎
 

= 𝑆0√𝑇
𝑑𝑁(𝑑1)

𝑑(𝑑1)
+

𝜕𝑑2

𝜕𝜎
(𝑆0

𝑑𝑁(𝑑1)

𝑑(𝑑1)
− 𝑋𝑒−𝑟𝑇

𝑑𝑁(𝑑2)

𝑑(𝑑2)
) =

𝑆0√𝑇

√2𝜋
𝑒−

1
2

𝑑1
2

 

and we are done. 

 

2. Zero. This is because the futures contract can be replicated with a long position in a call and a 

short position in a put with the same exercise terms. The gammas of the call and the put are the 

same. A long position in a futures contract is replicated with a single long position in a call and a 

single short position in a put. Thus, the gamma of the long call position offsets the gamma of the 

short put position. We can also solve this problem by computation. By the call-put parity we 

have the futures contract has the value V0 = c0 – p0 = S0 – Xe-rT. Thus the gamma of this portfolio 

equals: 

𝜕2𝑉0

𝜕𝑆0
2 = 0. 

 

3.  Since by put-call parity p = c- S + Xe-rT, 
𝜕𝑝

𝜕𝑆
=

𝜕𝑐

𝜕𝑆
− 1 = ∆𝑐 − 1 = 𝑁(𝑑1) − 1. This means that 

( )
p

d
p

e
TSS

dN

SS

p
==



−
=




=



 −
21

2

2
2
1

2

1)1(


 

 

4.a.  The Black-Scholes model is written as follows: 

𝑐0 = 𝑆0𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2). 
We will use a combination of the product and chain rules to differentiate c0 with respect to T to 

obtain the option theta: 

𝜃 =
𝜕𝑐0

𝜕𝑇
= 𝑆0

𝑑(𝑁(𝑑1))

𝑑(𝑑1)

𝜕𝑑1

𝜕𝑇
− 𝑋𝑒−𝑟𝑇

𝑑(𝑁(𝑑2))

𝑑(𝑑2)

𝜕𝑑2

𝜕𝑇
− 𝑋𝑒−𝑟𝑇𝑁(𝑑2)(−𝑟). 

We will rewrite this derivative to exploit a trick describe in Appendix 7B to this chapter that will 

enable us to group and eliminate some terms afterwards. Since 𝑑1 = 𝑑2 + 𝜎√𝑇 = 𝑑2 + 𝜎𝑇
1

2, 

then 
𝜕𝑑1

𝜕𝑇
=

𝜕𝑑2

𝜕𝑇
+

1

2
𝜎𝑇−

1

2 =
𝜕𝑑2

𝜕𝑇
+

𝜎

2√𝑇
.  Putting this result into the equation above and simplifying 

slightly gives: 

𝜕𝑐0

𝜕𝑇
= 𝑆0

𝑑(𝑁(𝑑1))

𝑑(𝑑1)
[
𝜕𝑑2

𝜕𝑇
+

𝜎

2√𝑇
] − 𝑋𝑒−𝑟𝑇

𝑑(𝑁(𝑑2))

𝑑(𝑑2)

𝜕𝑑2

𝜕𝑇
+ 𝑟𝑋𝑒−𝑟𝑇𝑁(𝑑2) 
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𝜕𝑐0

𝜕𝑇
= [𝑆0

𝑑(𝑁(𝑑1))

𝑑(𝑑1)
− 𝑋𝑒−𝑟𝑇

𝑑(𝑁(𝑑2))

𝑑(𝑑2)
]

𝜕𝑑2

𝜕𝑇
+

𝑆0𝜎

2√𝑇

𝑑(𝑁(𝑑1))

𝑑(𝑑1)
+ 𝑟𝑋𝑒−𝑟𝑇𝑁(𝑑2). 

Using equation (34) in Appendix 7.B shows that the expression in the square brackets above 

equals zero, and so: 

𝜃 =
𝜕𝑐0

𝜕𝑇
=

𝑆0𝜎

2√2𝜋𝑇
𝑒−

1
2

𝑑1
2

+ 𝑟𝑋𝑒−𝑟𝑇𝑁(𝑑2). 

 b.  As we derived in Appendix 7.A, the solution for the call at time t is given by equation 

(33): 

𝑐 = 𝑆𝑁(𝑑1(𝑆, 𝑇 − 𝑡)) − 𝑋𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2(𝑆, 𝑇 − 𝑡)), 
where the functions 

        𝑑1(𝑆, 𝑇 − 𝑡) =
𝑙𝑛(

𝑆

𝑋
)+(𝑟+

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
 and 𝑑2(𝑆, 𝑇 − 𝑡) = 𝑑1(𝑆, 𝑇 − 𝑡) − 𝜎√𝑇 − 𝑡. 

Notice that the price c of the call at time t is the same as the price of the call at time 0, c0(S0,T), if 

one replaces S0 with S and T with T – t in the expression for c0. Essentially, it is as if time t 

becomes time 0, so that S is now the initial stock price and the time to reach the exercise date is T 

–t. This can be expressed as: c = c0(S,T –t). Thus, it must be the case by the chain rule that: 
𝜕𝑐

𝜕𝑡
=

𝜕𝑐0(𝑆, 𝑇 − 𝑡)

𝜕(𝑇 − 𝑡)

𝑑(𝑇 − 𝑡)

𝑑𝑡
= −

𝜕𝑐0(𝑆, 𝑇 − 𝑡)

𝜕(𝑇 − 𝑡)
= −𝜃(𝑆, 𝑇 − 𝑡). 

Using part a, we obtain the required derivative: 
𝜕𝑐

𝜕𝑡
=

−𝑆𝜎

2√2𝜋(𝑇 − 𝑡)
𝑒−

1
2

𝑑1
2

− 𝑟𝑋𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) 

where d1 and d2 are evaluated at S and T – t. 

b. In order to show that the Black-Scholes pricing equation we obtained for the call is a 

solution of the Black- Scholes differential equation, we first substitute c – SN(d1) for  -Xe-

r(T-t)N(d2) into the right side of the equation for 
𝜕𝑐

𝜕𝑡
 above and rearrange terms as follows:  

𝜕𝑐

𝜕𝑡
= 𝑟(𝑐 − 𝑆𝑁(𝑑1)) −

1

2
𝑆2𝜎2 𝑒

−
1
2

𝑑1
2

√2𝜋
∙

1

𝑆𝜎√𝑇−𝑡
.             

As derived in Appendix B to this chapter, we have the following equalities: 

( )1dN
S

c
=





 

TS

e

S

c

d

 0

2

2

2 1

2

2
1

=















 −

 

that applied at time 0. If we consider these values at time t, then:  

𝑁(𝑑1) =
𝜕𝑐

𝜕𝑆
 

and 

𝜕2𝑐

𝜕𝑆2
=

1

√2𝜋
𝑒−

1
2

𝑑1
2

∙
1

𝑆𝜎√𝑇 − 𝑡
 

where d1 is evaluated at S and T – t. Substituting these equalities into the theta equation (actually 

its negative) above produces the Black-Scholes differential equation, which verifies that the 

Black Scholes model is a solution to the differential equation: 
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2

2
22

2

1

S

c
S

S

c
rSrc

t

c




−




−=




  

The essential difference between the two is the sign change, arising from the fact that a decrease 

in T means that the option expires sooner and an increase in t means that the option expires 

sooner; =-c/t. More importantly, this result verifies that the Black Scholes model is a 

solution to the Black-Scholes differential equation 23 in Section 7.3.2. 

 

5.     a. Tiblisi Company calls expiring in three months with an exercise price equal to 25 are 

currently worth 6.5725. This value is based on d1 = 0.799405189, d2 = 0.499405189, N(d1) = 

0.787972249 and N(d2) = 0.691253018. 

        b. Greeks for the call are computed as follows: 

 Delta =  0.787972249 

 Gamma = 0.032206303 

 Theta = 6.070521207 

 Vega = 4.347657115 

 Rho = 4.266663344 

        c. N(d2) = 0.691253018 

        d. p0 = 1.261959101 

        e. Delta = -0.212027751 

 Gamma = 0.032206303 

 Theta = -4.83605 

 Vega = 4.347657115 

 Rho = -1.905697909 
 

6.  Our first step is to find d1 and d2: 

  

16.1
28.

2.8.
2

1
04.

10

20
ln 2

2.05.

1 =









++









=

−e

d  

   0293.28.16.12 =−=d  

We value the call and put as follows:  

15.11512.
10

877.20
204.

2.05.

0 =−=


−

e
ec  

    p0 = 11.15 + 10(.923) - 20e-.042 = 2.28 

 

7.  σ = .4: Because we are working with a European call with a continuous dividend, we should 

use the Merton Continuous Dividend model to value this index call. Our model inputs are c0 = 

$4139.86, S0 = 34,500, δ = .03, T = .5, X = 35,000 and rf = .10. Through a process of trial and 

iteration, we find that the implied volatility is σ = .4. For example, try an initial guess for 

standard deviation equal to, for example, σ=.3. This results in a call value equal to 3201. This 

call value is much too small, so increase the standard deviation estimate. Try a much larger 

estimate, say σ = .5. This estimate results in a call value that is too large at 5074. So, we try a 

smaller estimate. Ultimately, we arrive at an estimate within .02 of the correct standard deviation 

of .4, plus or minus .02. To find the implied volatility of the index contract, our first step is to 

find d1 and d2: based on (here, with correct) trial values: 
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𝑑1 =
𝑙𝑛(

34500

35000
)+(.10+

1

2
.𝟒2)×.5

.4√.5
= .2143 

d2 = -.2143 - . 𝟒√. 5 = -.0686 

N(d1) = .5848; N(d2) = .4727 

𝑐0 =  
34500

𝑒 .03×.5
× .5848 −

35000

𝑒 .10×.5
× .4727 =  4139.858 

 

8.   a.  First, we work through the European known-dividend call model: 

𝑑1 =
ln (

30 − 2𝑒 .03×.25

35
) + (. 03 +

1
2 × .16) × .5

. 4 × √. 5
= −.5926; 𝑁(𝑑1) =  .2767 

𝑑2 = −.5926 − .4 × √. 5 = −.0875; 𝑁(𝑑2) =  .1907 

𝑐0 = (30 − 2𝑒 .03×.25) × .2767 −
35

𝑒 .03×.5
× .1907 = 1.18 

Since the call is currently selling for $2, it is not a good investment; it should be sold. 

      b.  Based on put-call parity and the known European dividend model, the put is worth p0 = 

1.18 + 35(.985) - 30+2e-.03.25 = 7.64. 

      c.  If the call were presumed to be exercised on its ex-dividend date, it would be worth .869: 

𝑑1 =
ln (

30
35

) + (. 03 +
1
2 × .16) × .25

. 4 × √. 25
= −.6333; 𝑁(𝑑1) =  .2633 

𝑑2 = −.6333 − .4 × √. 25 = −.8333; 𝑁(𝑑2) =  .2024 

𝑐0 = 30 × .2633 −
35

𝑒 .03×.25
× .2024 = .869 

Thus, the value of the call is MAX[1.18,.869] = 1.18. 

      d.   Under the Geske-Roll-Whaley Model, we first calculate StD
*, the critical stock value on 

the ex-dividend date required for early exercise of the call: 

XDSc tDtD −+= **
 

35238954.3738954.4 −+=  

The value of the American call is found to be 1.23, calculated as follows: 

    5926.
5.4.

5.16.
2

1
03.

35

230
ln

25.03.

1 −=


















++







 −

=

−e

d  

     8754.5.4.5926.2 −=−−=d                             

3058.1
25.4.

25.16.
2

1
03.

38954.37

230
ln

25.03.

1 −=


















++







 −

=

−e

y  

     5058.125.4.3058.12 −=−−=y  

( ) ( )
( ) 23.106606.2351415.35

1994.23009581.230

25.03.5.03.

25.03.25.03.

=−−−

−+−=

−−

−−

ee

eeco  

 

9.     a.       The Merton Continuous leakage model applies in this case, so that: 
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        b.       ( ) ( )2100 dN
e

X
dNeSc

Tr

qT −= −

 

    
T

Tr
X

e
S

d

qT



 







++









=

−
2

0

1

2

1
ln

 

      Tdd −= 12
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Appendix 10.A: Deriving Black-Scholes Delta and Gamma 

 

Black-Scholes and Delta 

 The Black-Scholes model is given by the following: 

 

𝑐0 = 𝑆0𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2) 

  

𝑑1 =
𝑙𝑛 (

𝑆0

𝑋 ) + (𝑟 +
1
2 𝜎2) 𝑇

𝜎√𝑇
, 

    

𝑑2 =
𝑙𝑛 (

𝑆0

𝑋 ) + (𝑟 −
1
2 𝜎2) 𝑇

𝜎√𝑇
 

 

where N(d*) is the cumulative normal distribution function for (d*). 

 Option traders find it very useful to know how the values of their option positions will 

change as the various factors used in the pricing model change. For example, the sensitivity of 

the call's value to the stock's price is given by Delta: 
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Applying the Chain Rule to Derive Delta 

 We obtain this delta by first applying the Chain Rule to the Black-Scholes model as 

follows: 
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Our expression for Delta is obtained once we demonstrate that the two terms inside the 

brackets offset each other:5 
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5 This trick to eliminate offsetting terms is key to finding many of the option Greeks (sensitivities). 
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We re-write the right side of this equality as follows: 
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We continue to re-write as follows: 
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Substituting for d1 from the Black Scholes model and then canceling offsetting terms, we have 
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Now, it should be clear that equation (34) and the formula for delta are true: 
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Gamma 

 We can derive gamma, the derivative of delta with respect to S using the chain rule as 

follows: 
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Appendix 10.B: Deriving Vega 

 

 Sources of sensitivity of the Black-Scholes model (See Black and Scholes [1972]) to each 

of its 5 inputs are known as the Greeks. For example, option prices are very sensitive to the risk 

 of the underlying security. Vega, which actually is not a Greek letter, measures the sensitivity 

of the option price to the underlying stock's standard deviation of returns (vega is sometimes 

known as either kappa or zeta). Vega is calculated by finding the partial derivative of c0 with 

respect to   in the Black Scholes option pricing model. One might expect the call option price to 

be directly related to the underlying stock's standard deviation: 
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Although the Black-Scholes model assumes that the underlying stock volatility is constant over 

time, in reality, volatility can and does shift. Vega provides an estimate for the impact of a small 

volatility shift on a particular option’s value. For example, in our illustration in Section E, we 

can calculate the option vega as follows: 
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This vega implies that a small increase in  (e.g., .01, from .6904 to .7004) would result in an 

approximate change 92.958% as large in option value (e.g., from 83.196 to 83.97): 

 

𝑐1 = 𝑐0 +  ∆σ =  83.196 +  92.958 × .01 = 83.97 

 

Vega can be used in a banking context to calculate the impact of a change in asset volatility on 

equity value. Vega-based calculations are more accurate for smaller changes in volatility. 

 

 


