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Chapter 12: Beyond Plain Vanilla Options on Stock 
 

A. Compound Options 

The Black-Scholes differential equation and model have a huge number of widely 

varying applications, particularly when it is extended by relaxing assumptions. Relaxation of 

assumptions has many useful applications and interesting implications. Here, we will discuss a 

few of the many extensions of the model. 

A compound option (See Roll [1977] and Geske [1979a and 1979b]) is simply an option 

on an option. While such options are useful in their own right as traded securities, their analyses 

have a variety of other applications as well. For example, limited liability equity gives 

shareholders the right to either pay off creditors in full and take control of the firm's assets or 

abandon their claim on the firm's assets. This limited liability corporate feature essentially results 

in equity being a call option on the firm's assets. Hence, a call option on limited liability equity is 

a compound option, a call on a call. American options have compound option features. For 

example, an American call might be exercised early just prior to the underlying stock's ex-

dividend date. Alternatively, the owner of the call has the right to hold the call to its expiry, 

creating a call on a call, where the compound call is exercised by not exercising the American 

option just prior to the ex-dividend date. There are also a variety of real option applications 

(options on corporate securities and projects) for compound option pricing models.  

 A compound option has two exercise prices and two expiration dates, the first of each 

(X1, T1) that applies to the right to buy or sell the underlying option and a second of each (X2, T2) 

that applies to buying or selling the security that underlies the underlying option with T1 < T2. 

We will assume that the underlying option is a European option with exercise price X2 and 

expiration date T2. Denote the values of the underlying call and put at time t by cu,t and pu,t, 

respectively. Assume that there is a European option on this underlying option with exercise 

price X1 on expiration date T1. Compound options come in 4 varieties with the following exercise 

date T1 payoff functions, where cu,T1 and pu,T1 are exercise date underlying call and put values: 

 

1. Call on call: MAX[cu,T1 -X1, 0] 

2. Put on call: MAX[X1 - cu,T1, 0] 

3. Call on put: MAX[pu,T1 -X1, 0] 

4. Put on put: MAX[X1 - pu,T1, 0] 

 

 First, consider a call on a call. The compound call gives its owner the right to purchase an 

underlying call with value cu,T1 at time T1 for price X1. This compound call is exercised at time T1 

only if the underlying call at time T1 is sufficiently valuable, which will be the case if the stock 

underlying the underlying call is sufficiently valuable. That is, the call on the underlying call 

option is exercised at time T1 only if the stock price ST1 exceeds some critical underlying stock 

price 𝑆𝑇1
∗  at the time. If the stock price ST1 exceeds this critical value 𝑆𝑇1

∗ , the underlying call 

value cu,T1 will exceed the exercise price X1 of the compound call. Thus, we first calculate this 

critical value 𝑆𝑇1
∗ , which solves: 

 

𝑐𝑢,𝑇1(𝑆𝑇1
∗ , 𝑇1; 𝑟, 𝑇2, 𝑋2, 𝜎) =  𝑋1 

 

To calculate the left side of this equation, we would use the Black Scholes model equation (24), 

replacing S0 with the variable 𝑆𝑇1
∗ , X with the number X2, and T with the number T2 – T1. The 
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numbers r and σ would remain the same. We will demonstrate shortly how to iterate to find the 

value of 𝑆𝑇1
∗  at time T1 that would lead to optimal exercise of the compound call given the first 

exercise price X1. There are several numerical and iterative techniques for solving this equality 

for ST1
* (e.g., the methods of bisection and Newton Raphson), but simple substitution and 

iteration will work. 

 

Estimating Exercise Probabilities 

Following the reasoning from Section 7.D, and assuming that the underlying stock price 

process is as we discussed in Chapter 7, the probability that the stock price at time T1 will exceed 

the critical value 𝑆𝑇1
∗  is N(d2), calculated as follows: 

 

𝑑1 =
[𝑙𝑛 (

𝑆0

𝑆𝑇1
∗ ) + (𝑟 +

1
2 𝜎2) 𝑇1]

𝜎√𝑇1

 

 

𝑑2 = 𝑑1 − 𝜎√𝑇1, 

 

where N(d2) is the cumulative normal density function for d2. 

 Exercising the underlying call requires that the stock price ST1 at time T1 exceed its 

critical value 𝑆𝑇1
∗  and that the stock price ST2 exceeds the underlying option exercise price X2 at 

time T2. In other words, for both the compound call and its underlying call to be exercised, the 

value of the underlying stock must exceed 𝑆𝑇1
∗  at time 1 (that is, the value of the underlying call 

must exceed X1) and the value of the underlying stock must exceed X2 at time T2. The probability 

of both occurring equals: 

 

𝑀 (𝑑2, 𝑦2; √
𝑇1

𝑇2
) 

 

where: 

 

𝑦1 =
[𝑙𝑛 (

𝑆0

𝑋2
) + (𝑟 +

1
2

𝜎2) 𝑇2]

𝜎√𝑇2

 

 

𝑦2 = 𝑦1 − 𝜎√𝑇2. 

 

and that the correlation coefficient between returns during our overlapping exercise periods 

equals  = √𝑇1/𝑇2.1 The bivariate (multinomial) normal distribution function M(*,**;) provides 

the joint probability distribution function that is used to calculate the probability that our two 

random variables, ST1 and ST2 exceed the time T1 critical value 𝑆𝑇1
∗  and the time T2 exercise price 

 
1 The processes are perfectly correlated during their overlapping period T1 and are independent over their non-

overlapping period T2-T1. Thus, T1/T2 is the proportion of variability in one random variable explained by the other 

and the r-square value between the two process is T1/T2. Thus, the correlation coefficient is  = √𝑇1/𝑇2. 
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X2, respectively. A condensed version of table for this distribution is provided as an appendix at 

the end of this chapter. 

 

Valuing the Compound Call 

 Relying on and extending the logic presented in Section 7.D (See Whaley [1981 and 

1982]), we can derive the value of a European compound call with exercise price X1 and 

expiration date T1, on an underlying call with exercise price X2 and expiration date T2 on a share 

of stock with current price S0 with the following result: 

 

𝑐0,𝑐𝑎𝑙𝑙 = 𝑆0𝑀 (𝑑1, 𝑦1; √
𝑇1

𝑇2
) − 𝑋2𝑒−𝑟𝑇2𝑀 (𝑑2, 𝑦2; √

𝑇1

𝑇2
) − 𝑋1𝑒−𝑟𝑇1𝑁(𝑑2), 

 

where 

 

𝑑1 =
[𝑙𝑛 (

𝑆0

𝑆𝑇1
∗ ) + (𝑟 +

1
2 𝜎2) 𝑇1]

𝜎√𝑇1

 

 

𝑑2 = 𝑑1 − 𝜎√𝑇1 

 

𝑦1 =
[𝑙𝑛 (

𝑆0

𝑋2
) + (𝑟 +

1
2 𝜎2) 𝑇2]

𝜎√𝑇2

 

 

𝑦2 = 𝑦1 − 𝜎√𝑇2 

 

Illustration: Valuing the Compound Call 

 Consider a compound call with exercise price X1 = 3, expiring in three months (T1 = .25) 

on an equity call, with exercise price X2 = 45, expiring in 6 months (T2 = .5). The stock currently 

sells for S0 = 50 and has a return volatility equal to 𝜎 = .4. Thus, the compound call gives its 

owner the right to buy an underlying call in three months for $3, which will confer the right to 

buy the underlying stock in six months for $45. The riskless return rate equals r = .03. What is 

the value of this compound call?  

 First, we calculate the critical value 𝑆𝑇1
∗  for underlying option exercise at time T1. A 

search process reveals that this critical value equals 43.58191: 
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𝑐𝑢,𝑇1 = 𝑆𝑇1
∗ × 𝑁 (

[𝑙𝑛 (
𝑆𝑇1

∗

45
) + (. 03 +

1
2 × .16) × (.5 − .25)]

. 4 × √. 5 − .25
)

−
45

𝑒 .03×(.5−.25)
𝑁 (

[𝑙𝑛 (
𝑆𝑇1

∗

45
) + (. 03 −

1
2 × .16) × (.5 − .25)]

. 4 × √. 5 − .25
) = 𝑋1

= 3;   𝑆𝑇1
∗ = 43.58191  

 

We obtained this critical value by a process of substitution and iteration, assuming that the 

underlying call would be purchased for X1 = $3 and would confer the right to buy the underlying 

stock three months later for X2 = $45. The minimum acceptable value justifying the underlying 

call's exercise is cu,T1 = X1 = $3, which means that the underlying stock price must be at least 𝑆𝑇1
∗  

= 43.58191 at time T1 to exercise the right to purchase the underlying call. 

Note that the correlation coefficient between our two random variables is ρ = √. 25/.5 = 

.7071. We will use the reasoning from Section 5.4 and the bivariate normal distribution along 

with the formulas in Section 7.6.2 to calculate the compound call. But first, we make a few 

intermediate calculations: 

 

𝑑1 =
[𝑙𝑛 (

50
43.58191

) + (. 03 +
1
2 × .16) × .25]

. 4√. 25
= .8244 

 

𝑑2 = .8244 − .4 × √. 25 = .6244 

 

𝑦1 =
[𝑙𝑛 (

50
45

) + (. 03 +
1
2 × .16) × .5]

. 4 × √. 5
= .567 

 

𝑦2 = .567 − .4 × √. 5 = .2841 

 

 

Finally, we calculate the time zero value of the compound call as follows:2 

 

𝑐0,𝑐𝑎𝑙𝑙 = 50M(. 8244, .567; .7071) − 45𝑒−(.03×.5)M(. 6244, .2841; .7071)

− 3𝑒−(.03×.25)𝑁(. 6244)

=  50 × .6529 − 45 × 𝑒−(.03×.5) × .5507 − 3𝑒−(.03×.25) × .7338 = 6.0465 

 

Thus, we find that the value of this compound call equals 6.0465. The bivariate probabilities 

were calculated using a spreadsheet-based multinomial cumulative distribution calculator (See 

Drezner [1978] and Hull [2010] and [2011] for details). There is a N(d2) = .7338 probability that 

the compound call will be exercised to purchase the underlying call and a .6118 probability that 
 

2 See Section 2.7.3 of Knopf and Teall [2018] for the procedure to calculate bivariate normal distributions. 

Alternatively, it might be easy to use the workbook for Chapter 8 created for this course, the spreadsheet for the 

Cumulative Standard Normal Bivariate Density Function to solve this and related problems. 
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the compound call and its underlying call will be exercised. 

 

The Roll-Geske-Whaley Compound Option Formula 

Since American options need to allow for early exercise of the option on dividend-paying 

stocks, they are significantly more difficult to price than their European counterparts. Their early 

exercise potential creates an inequality in the Black-Scholes differential equation, which makes it 

considerably more difficult to solve. In fact, even the standard put-call parity condition breaks 

down for American options. 

Black’s Pseudo-American call model assumes ex-ante that the call on a dividend paying 

stock may be exercised early, but it does not provide a probability for this early exercise. In 

effect, the option holder is assumed to decide at time 0 whether he prefers to exercise the call on 

the ex-dividend date to receive the stock and the dividend or wait until the call's expiry and 

consider exercising to receive the stock without the dividend. While this assumption is not true, 

the option value does reflect the assumption. Roll’s (also attributed to Geske and Whaley) 

formula corrects for this early decision assumption, but is somewhat more complex.  

The Roll-Geske-Whaley model (See Roll [1977], Geske [1979a and 1979b] and Whaley 

[1981 and 1982]) requires that we first we find that minimum stock price (StD
*) at the ex-

dividend date (tD) that will lead to early exercise of the option. That is, on the ex-dividend date, 

given a known dividend payment D, there is some minimum time tD stock price StD
* at which 

early exercise (on the ex-dividend date) is optimal. At this minimum price, or at a higher price, 

paying the exercise price and receiving the stock along with the dividend is worth more than 

retaining the call. Thus, it makes sense to exercise the call. All values of StD exceeding this price 

StD
* will lead to early option exercise. This minimum price is found by solving the following for 

StD
*: 

 

(26)   ( ) XDSXTrtSc tDDtDtD −+= ** ,,,;,   

 

 When dividends are zero, the call will never be exercised early. If dividends are small, 

the underlying stock price StD
* at time tD will need to be very large to justify early exercise of the 

call. Thus, for any dividend amount D > 0, there is some minimum stock price StD
* on the ex-

dividend date that would lead to early exercise of the American call. There are several numerical 

and iterative techniques for solving this equality for StD
* (e.g., the methods of bisection and 

Newton Raphson), but simple substitution and iteration will work. Second, to find the call’s 

current value c0, solve the following: 
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(31)      Dtyy −= 12  

 

M(d(∗), y(∗); √
𝑡𝐷

𝑇
) is a cumulative multivariate (bivariate) normal distribution, where √

𝑡𝐷

𝑇
 is 

the correlation coefficient between random variables StD and ST, assuming that stock returns are 

independent over non-overlapping periods of time. The process of computing this cumulative 

probability is described in Section 2.8. 

The intuition behind the Roll-Geske-Whaley model is fairly straightforward. An American 

call with a single ex-dividend date is essentially a compound option that can be replicated with 

the following portfolio:  

 

a. A long position in a European call with expiration T and exercise price X. 

b. A short position in a European compound call (call on the call in part a) with expiration 

tD, and exercise price StD
* + D - X 

c. A long position in a European call with expiration tD and exercise price StD
* 

 

This implies that the American call holder can hold his call to expiration as he would a European 

call unless it gets called away from him at time tD by his exercising a second call at time tD to 

take the underlying stock at price StD
*. The cash flows produced from this replicating portfolio on 

the ex-dividend date are given in Table 6. We see in Table 1 that if the dividend amount is 

sufficiently high such that StD > StD
*, the American call is exercised on the ex-dividend date. 

Notice that Table 1 demonstrates that the payoff structure of the portfolio exactly duplicates the 

required payoff structure for an American call on the date tD, thus demonstrating that the 

portfolio replicates the American call. 

  

POSITION StD < StD
* (c Held) StD > StD

* (c Exercised) 

European Call (a) c(StD, tD, r, σ, T, X) 0 (Called away by Call (b)) 

Compound Call (b) 0 StD
* + D – X (Exercise Money) 

European Call (c) 0 StD – StD
* (Call is Exercised) 

Total c(StD, tD, r, σ, T, X) StD + D - X 

Table 1: Compound Call Option Payoffs on Ex-Dividend Date tD 

 

Illustration: Calculating the Value of an American Call on Dividend-Paying Stock 

 Suppose that we wish to calculate the value of a 6-month X = $45 American call on a 

share of stock that is currently selling for $50. The stock is expected to go ex-dividend on a $5 

payment in three months, and not again until after the option expires. The standard deviation of 

returns on the underlying stock is .4 and the riskless return rate is 3%. What is the call worth 

today assuming: 
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a. the European Known Dividend model? 

b. Black’s Pseudo-American Call model? 

c. the Roll-Geske-Whaley model? 

 

   a. Under the European Known Dividend model, the value of the call is $5.39, calculated as 

follows: 

 

𝑐0 = (50 − 5𝑒 .03×.25) × .5782 −
45

𝑒 .03×.5 × .4660 = 5.39, 

 

where 

 

𝑑1 =
ln (

50 − 5𝑒 .03×.25

45
) + (. 03 +

1
2 × .16) × .5

. 4 × √. 5
= .1974; 𝑁(𝑑1) =  .5782 

 

𝑑2 = .5782 − .4 × √. 5 = −.0855; 𝑁(𝑑2) =  .4660 

 

   b. To use Black's Pseudo-American call formula, we will first determine whether dividend 

exceeds the ex-dividend date time value associated with exercise money: 5 > 45[1-e-.03(.5-.25)] = 

.336. Since the dividend does exceed this value, we will calculate the value of the call assuming 

that we exercise it just before the underlying stock goes ex-dividend in 3 months, while it trades 

with dividend: 

 

𝑐0 = 50 × .7468 −
45

𝑒 .03×.25 × .6788 = 7.02, 

 

where 

 

𝑑1 =
ln (

50
45

) + (. 03 +
1
2 × .16) × .25

. 4 × √. 25
= .6643; 𝑁(𝑑1) =  .7468 

 

𝑑2 = .6643 − .4 × √. 25 = .4643; 𝑁(𝑑2) =  .6788 

 

Under Black's Pseudo-American call formula, we find that the value of the call is MAX[5.39, 

7.02], or 7.02. 

   c. Using the Geske-Roll-Whaley Model, we first calculate StD
*, the critical stock value on 

the ex-dividend date required for early exercise of the call: 

 

XDSc tDtD −+= **
 

 

𝑐𝑡𝐷
 (𝑆𝑡𝐷

∗ , .25, .03, .5,45, .4) = 𝑆𝑡𝐷
∗ + 5 − 45. 

 

Using simple substitution or an appropriate numerical or iterative technique, one finds that: 

 

𝑐𝑡𝐷
 (42.4924, .25, .03, .5,45, .4) = 2.4924 = 42.4924 + 5 − 45 
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4924.42* =tDS  

 

This means that if the stock is selling for StD
* = $42.4924 in 3 months (tD = .25), the call on the 

stock trading ex-dividend will have the same value as the stock, plus declared dividend minus the 

exercise money. Thus, as long as the ex-dividend value of the stock plus the dividend minus 

exercise money exceeds the ex-dividend call value, the call will be exercised early. The value of 

the American call is found to be 6.96, calculated from equation (27) as follows: 
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 The Roll-Geske-Whaley model provided the correct price of $6.96 for the American call. 

Black’s approximation ($7.02) provided a reasonable estimate, while the European Known 

Dividend model, as expected, undervalued the call ($5.39) relative to Black's model.  

 

Put-Call Parity for Compound Options 

 Here, using the notation from above, we set forth pricing formulas for other compound 

options, including a call on a call (repeated from above), call on a put, put on a call and put on a 

put: 

 

𝑐0,𝑐𝑎𝑙𝑙 = 𝑆0𝑀 (𝑑1, 𝑦1; √
𝑇1

𝑇2
) − 𝑋2𝑒−𝑟𝑇2𝑀 (𝑑2, 𝑦2; √

𝑇1

𝑇2
) − 𝑋1𝑒−𝑟𝑇1𝑁(𝑑2) 

 

𝑝0,𝑐𝑎𝑙𝑙 = 𝑋2𝑒−𝑟𝑇2𝑀 (−𝑑2, 𝑦2; −√
𝑇1

𝑇2
) − 𝑆0𝑀 (−𝑑1, 𝑦1; −√

𝑇1

𝑇2
) + 𝑋1𝑒−𝑟𝑇1𝑁(−𝑑2) 
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𝑐0,𝑝𝑢𝑡 = 𝑋2𝑒−𝑟𝑇2𝑀 (−𝑑2, −𝑦2; √
𝑇1

𝑇2
) − 𝑆0𝑀 (−𝑑2, −𝑦2; √

𝑇1

𝑇2
) − 𝑋1𝑒−𝑟𝑇1𝑁(−𝑑2) 

 

 

𝑝0,𝑝𝑢𝑡 = 𝑆0𝑀 (𝑑1, −𝑦1; −√
𝑇1

𝑇2
) − 𝑋2𝑒−𝑟𝑇2𝑀 (𝑑2, −𝑦2; −√

𝑇1

𝑇2
) + 𝑋1𝑒−𝑟𝑇1𝑁(𝑑2) 

 

 Let ct,call, pt,call, ct,put, and pt,put denote the values of a call on a call, put on a call, call on a 

put, and put on a put at time t, respectively. To obtain the formulas from our compound call 

pricing formula, first recall our compound option payoff functions from Section 7.6.1. We 

can demonstrate that the above pricing functions for our other compound options hold by 

first working with the exercise date T1 payoff function for a portfolio, say, with a long 

position of one call on a call and a short position of one put on a call. At expiration date T1, 

we have for our portfolio: 

 

𝑐𝑇1,𝑐𝑎𝑙𝑙  −𝑝𝑇1,𝑐𝑎𝑙𝑙 = MAX[cu,T1 -X1,0]  -  MAX[X1 - cu,T1,0] = cu,T1 -X1. 
 

For any earlier time t < T1, the value of the portfolio with time T1 cash flow cu,T1 -X1 must 

equal cu,t – X1e
-r(T1-t) since we must discount the cash associated with the exercise money X. 

In particular, at time 0, the value of the portfolio is: 

 

𝑐0,𝑐𝑎𝑙𝑙 − 𝑝0,𝑐𝑎𝑙𝑙 = 𝑐𝑢,0 − 𝑋1𝑒−𝑟𝑇1 . 
 

This formula is the put-call parity relation for the options on the underlying call. Note that 

cu,0 is the present value of the underlying call and X1e
-rT1 is the present value of the exercise 

money associated with the compound call. 

 Next, we demonstrate that the two relevant time zero pricing formulas for the call on the 

call and the put on the call above are consistent with this portfolio value. We will 

demonstrate that our call on call value minus our put on call value yields the same value as 

our put-call formula for the options on the underlying call above: 
 

𝑆0𝑀 (𝑑1, 𝑦1; √
𝑇1

𝑇2
) − 𝑋2𝑒−𝑟𝑇2𝑀 (𝑑2, 𝑦2; √

𝑇1

𝑇2
) − 𝑋1𝑒−𝑟𝑇1𝑁(𝑑2)

− [𝑋2𝑒−𝑟𝑇2𝑀 (−𝑑2, 𝑦2; −√
𝑇1

𝑇2
) − 𝑆0𝑀 (−𝑑1, 𝑦1; −√

𝑇1

𝑇2
)

+ 𝑋1𝑒−𝑟𝑇1𝑁(−𝑑2)] = 𝑐u,0 − 𝑋1𝑒−𝑟𝑇1 

 

Because the normal curve is symmetric, implying that the total area under the normal curve is 

N(d2) + N(-d2) = 1, this simplifies as follows: 
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𝑆0𝑀 (𝑑1, 𝑦1; √
𝑇1

𝑇2
) − 𝑋2𝑒−𝑟𝑇2𝑀 (𝑑2, 𝑦2; √

𝑇1

𝑇2
) − 𝑋1𝑒−𝑟𝑇1

− [𝑋2𝑒−𝑟𝑇2𝑀 (−𝑑2, 𝑦2; −√
𝑇1

𝑇2
) − 𝑆0𝑀 (−𝑑1, 𝑦1; −√

𝑇1

𝑇2
)] = 𝑐u,0 − 𝑋1𝑒−𝑟𝑇1 , 

 

and with some minor rearrangement, is rewritten: 

 

𝑆0 [𝑀 (𝑑1, 𝑦1; √
𝑇1

𝑇2
) + 𝑀 (−𝑑1, 𝑦1; −√

𝑇1

𝑇2
)]

− 𝑋2𝑒−𝑟𝑇2 [𝑀 (𝑑2, 𝑦2; √
𝑇1

𝑇2
) + 𝑀 (−𝑑2, 𝑦2; −√

𝑇1

𝑇2
)]

 

− 𝑋1𝑒−𝑟𝑇1

= 𝑐𝑢,0 − 𝑋1𝑒−𝑟𝑇1 . 
 

Because 𝑁(𝑦1) = 𝑀 (𝑑1, 𝑦1; √
𝑇1

𝑇2
) + 𝑀 (−𝑑1, 𝑦1; −√

𝑇1

𝑇2
), and 𝑁(𝑦2) =  𝑀 (𝑑2, 𝑦2; √

𝑇1

𝑇2
) +

𝑀 (−𝑑2, 𝑦2; −√
𝑇1

𝑇2
), we have:3 

 
𝑆0𝑁(𝑦1) − 𝑋2𝑒−𝑟𝑇2𝑁(𝑦2) − 𝑋1𝑒−𝑟𝑇1 = 𝑐𝑢,0 − 𝑋1𝑒−𝑟𝑇1 . 

 

𝑆0𝑁(𝑦1) − 𝑋2𝑒−𝑟𝑇2𝑁(𝑦2) = 𝑐𝑢,0 

 

The final equality above is true because it is consistent with the European call value as derived 

earlier. This demonstrates that our put on call formula is consistent with our call on call formula, 

which was reasoned earlier. Similar manipulations can be used to verify our other compound 

option formulas and our compound option put-call parity formula depicted in Table 2. This 

simplifies to our standard plain vanilla put-call parity relation. 

 

Present Value: 

               𝑐0,𝑐𝑎𝑙𝑙       −            𝑝0,𝑐𝑎𝑙𝑙           =          𝑐0,𝑝𝑢𝑡           −           𝑝0,𝑝𝑢𝑡          + 𝑆0 − 𝑋2𝑒−𝑟𝑇2 

Time T1 Value: 

MAX[cu,T1 -X1,0]  -  MAX[X1 - cu,T1,0] = MAX[pu,T1 -X1,0]-MAX[X1 - pu,T1,0] + 𝑆0 − 𝑋2𝑒−𝑟𝑇2  

                        cu,T1 -X1                          =                         pu,T1 -X1                 + 𝑆0 − 𝑋2𝑒−𝑟𝑇2 

 

Table 2: Put Call Parity Relation for Compound Options 

 

 

 
3 It is fairly straightforward to verify these relationships by using a multinomial normal distribution calculator and a 

z-table. 
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B. Changing the Pricing Numeraire 

 Using our notation from Chapter 7, the exchange option is valued in risk-neutral 

probability space as: 

 

𝐸ℚ[𝑉𝑇|ℱ0] = 𝐸ℚ[𝑐𝑇|ℱ0] =  𝐸ℚ[𝑀𝐴𝑋[𝑆2,𝑇 − 𝑆1,𝑇, 0]|ℱ0] 

 

However, we can change our numeraire to stock 1. Now, the exchange option can be valued in a 

Black-Scholes environment with stock 1 as the numeraire: 

 
𝑐0

𝑆1,0
=  𝐸ℚ [𝑀𝐴𝑋 [

𝑆2,𝑇

𝑆1,𝑇
− 1,0] |ℱ0] 

 

        ( ) ( )21
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Thus, ignoring dividends, we calculate the value of a single exchange call (c0) as follows: 

 
        ( ) ( )20,110,20 dNSdNSc −=
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T
S

S

d


 2
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1
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1
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
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








=  
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S
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1
ln

0,1

0,2

12 −













=−=  

 

 It is interesting to note that not even the riskless return rate plays a role in valuing the 

exchange option in the absence of dividends; in effect, the riskless return is embedded in the 

price of stock 1 in the risk neutral environment. Recall that we used fairly minor variations of 

this equation in Chapters 7 and 9 to value plain vanilla calls (Just assume that asset 1 is riskless 

with value X). Following the procedure set forth in Section 7.D leads to the solution for c0 given 

above for the exchange option. 

 

C. Exchange Options 

The Margrabe Model 

 In this section, we discuss a variation of the Black-Scholes Model provided by Margrabe 

[1978] for the valuation of an option to exchange one risky asset for another. Suppose that the 

prices S1 and S2 of two assets follow geometric Brownian motion processes with 1 and 2 as 

standard deviations of logarithms of price relatives (or returns) for each of the two securities: 
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𝑑𝑆1

𝑆1
=  𝜇1𝑑𝑡 + 𝜎1𝑑𝑍1 

 
𝑑𝑆2

𝑆2
=  𝜇2𝑑𝑡 + 𝜎2𝑑𝑍2 

 

where E[dZ1  dZ2] = 1,2dt, where 1,2 is the correlation coefficient between logarithms of price 

relatives ln(S1/S2) between the two securities. Furthermore, the variance of logarithms of price 

relatives of the two assets relative to one another is 2:4 

 

𝜎2 = 𝜎
𝑙𝑛(

S1
S2

⁄ )

2 = 𝜎𝑙𝑛(S1)
2 + 𝜎𝑙𝑛(S2)

2 − 2
1,2
𝑙𝑛(S1)𝑙𝑛(S2) 

 

That is,  is the anticipated standard deviation of [ln(S1/S2)] over the life of the option. We will 

use the standard deviation of logs of relative returns 2 for our option valuation. Note that asset 1 

is potentially given up in the exchange and asset 2 is potentially received.  

 

The Garman- Köhlagen Model 

 In this section, we discuss a variation of the Black-Scholes Model provided by Garman 

and Köhlagen [1983], Biger and Hull [1983] and Grabbe [1983] for the valuation of currency 

options. This option is much like the exchange option presented above. The stock option pricing 

model is based on the assumption that investors price calls as though they expect the underlying 

stock to earn the risk-free rate of return. However, when we value currency options, we 

acknowledge that interest rates may differ between the foreign and domestic countries. Hence, 

we quote two interest rates r(f) and r(d), one each for the foreign and domestic currencies. The 

standard differential equation for currency options is as follows: 

 

   
( ) ( ) ( ) 

2

2
22

2

1

s

c
ss

s

c
frdrcdr

t

c




−




−−=




  

 

where s is the exchange rate. Notice that this differential equation is identical to the Merton 

dividend leakage model above, where the dividend yield  is replaced by the foreign interest rate 

r(f) and r(d) is simply the domestic riskless rate. Its particular solution, subject to the boundary 

condition  XsMAXc TT −= ,0 , is given as follows: 
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4 End of chapter Exercise 7.16 provides a verification of this equality. 
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      Tdd −= 12
 

 

where r(d) is the domestic riskless rate (the rate for the currency that will be given up if the 

option is exercised), r(f) is the foreign riskless rate (the rate for the currency which may be 

purchased). The spot rate for the currency is s0. The standard deviation of proportional changes 

in the currency value to be purchased in terms of the domestic currency is σ. The exercise price 

of the option, X, represents the number of units of the domestic currency to be given up for the 

foreign currency. 

 

Currency Option Illustrations 

 Consider the following example where call options are traded on Brazilian real (BRL). 

One U.S. dollar is currently worth 2 Brazilian real (s0 = .5). We wish to evaluate a 2-year 

European call and put on BRL with exercise prices equal to X = .45. U.S. and Brazilian interest 

rates are .03 and .08, respectively. The annual standard deviation of exchange rates is .15. We 

calculate d1 = .1313 and d2 = -.0808; N(d1) and N(d2) are .5522 and .4678, respectively. Thus, 

the call is valued at c0 = .037 and the put is valued at p0 = .035. 

 

Exchange Option Illustration 

 Suppose that the Predator Company has announced its intent to acquire the Prey 

Company through an exchange offer. That is, the Predator Company has extended an offer to 

Prey Company shareholders to exchange one share of its own stock for each share of Prey 

Company stock. This offer expires in 90 days (.25 years). Shares of stock in the two companies 

follow geometric Brownian motion processes with a variance of 2
ln(S1) = .16 for Predator 

(Predator is company 1) and 2
ln(S2) = .36 for Prey, and zero correlation 1,2 = 0 between the two. 

Predator Company stock is currently selling for $40 and Prey shares are selling for $50. The 

current riskless return rate is .05. What is the value of the exchange option associated with this 

tender offer? First, we calculate 2, the variance of changes (actually, logs thereof) of stock 

prices relative to each other as follows:  

 

𝜎2 = 𝜎
𝑙𝑛(

S1
S2

⁄ )

2 = 𝜎𝑙𝑛(S1)
2 + 𝜎𝑙𝑛(S2)

2 − 2
1,2
𝑙𝑛(S1)𝑙𝑛(S2) =  .16 + .36 − 2 × 0. 4. 6 = .52 

 

The value of this exchange option is calculated as 12.61 as follows: 

 

   ( ) ( ) 61.126695.407879.504050 210 =−=−= dNdNc  

 

   7879.)(;79917.
25.7211.

25.7211.
2
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1

2

1 ==










+





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

= dNd  

 

    6695.)(;4386.25.7211.79917. 22 ==−= dNd  

 

 With put-call parity, which is unchanged from the usual plain vanilla scenario, we find 

that the put is worth 2.61 in the Black-Scholes environment. Note that a long position in one call 

plus a short position in one put has a combined value equal to 10, the difference between the 
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prices of the two shares. A long position in the exchange call and a short position in the 

exchange put essentially means a one-for-one exchange of shares produces a profit of 10 to the 

portfolio holder. 

 Creating a call option to "buy" one share of Predator Company with one share of Prey 

Company is identical to creating a put option to "sell" one share of Prey Company for one share 

of Predator Company. Working through the Black-Scholes equations above, reversing the prices 

of stock 1 and stock 2, we find that the exchange put is worth 12.61, just as was the call price 

earlier. The exchange call in this reversed scenario is worth 2.61. 

 

D. Hedging Exchange Exposure with Currency Options 

 Multinational companies face a number of risks not experienced by companies operating 

in only one country. Among the most significant of these risks is exchange rate uncertainty and 

fluctuations. Based on the example introduced in Chapter 5, suppose that the Dayton Company 

of America expects to receive a payoff of £1,000,000 in three months, and intends to convert its 

cash flows to dollars. Continue to assume relevant data as follows: 

 

 Spot exchange rate: $1.7640/£ 

 Three-month forward exchange rate: $1.7540/£ 

 U.K. Borrowing interest rate: 10.0% 

 U.S. Borrowing interest rate: 8.0% 

 U.K. Lending interest rate: 8.0% 

 U.S. Lending interest rate: 6.0 % 

 

Also assume that there exist call and put options and forward contracts with the following terms, 

and that their premiums might not reflect formula values: 

 

 Term to options expiration: 3 months 

 Exercise price: $1.75 per £ 

 Put Premium: $0.025 per £ 

 Call Premium: $.065 per £ 

 Brokerage cost per options contract on £31,250: $50 

  

Our problem is to evaluate methods of managing the transaction risk associated with this 

extension of credit and the implications of each. 

 We will consider two options-based hedging strategies here. The first is the put hedge 

(partial hedge) strategy which involves the purchase of a put on pounds, enabling the firm to 

protect itself against devaluation of pounds. If the value of pounds increases, the firm realizes a 

greater profit. However, the firm must pay the full cost of the put. With the conversion or call 

and put hedge strategy, the proceeds from the sale of a call are used to offset the purchase price 

of the put. This strategy acts as a collar, locking in the value of pounds at the originations of the 

options contracts. Hence, the firm does not benefit from any appreciation in the value of the 

pound. 

 First, we consider the Put Hedge strategy. We will purchase three month put options on 

£1,000,000 with an exercise price of $1.75/£ with a total premium of $25,000. Time zero 

brokerage costs total $1,600 (32 contracts at $50 per contract). Thus, the total time zero cash 

outlay is $26,600. Forgone interest on the sum of the premium and brokerage costs totals $399. 
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Expressed in terms of future value, the total cash outlay is $26,999. The result of this strategy is 

that the firm receives one of the following in three months: 

 

1. An unlimited maximum less the $26,999 premium and brokerage fees. The 

dollar value of this strategy   increases as the value of the dollar drops against the 

pound. Since cash flows are not certain, this hedge is considered partial. 

2. A minimum of $1,750,000 less $26,999 for a net of $1,723,001. This minimum 

value to be received may be unacceptably low; however, there is upside cash flow 

potential. 

 

  Alternatively, the firm can employ the conversion or the Call and Put Hedge. This 

strategy involves the combination of calls and puts, such that total risk can be eliminated. 

Consider the writing of a call with an exercise price of $1.75 expiring in three months 

along with the purchase of a put with the same terms. The time zero cash flows are 

summarized as follows: 

 

   Put Premium....... - $25,000 Call Premium....... + $65,000 

   Put brokerage fee. - $ 1,600 Call brokerage fee. - $ 1,600 

    Net Time zero cash flows + $36,800 

 

 The result of this conversion is that the interest earned on the net time zero outlay 

is $552. If the three-month exchange rate is less than $1.75/£, the exchange rate of 

$1.75/£ is locked in by the put. If the exchange rate exceeds $1.75/£, the obligation 

incurred by the short position in the call is activated. Thus, the firm's exchange rate of 

$1.75/£ is locked in no matter what the market exchange rate is. The cash flows in three 

months are summarized as follows: 

 

 Put cash flows  (£1,000,000 × MAX[1.75-S1,0]) 

 Call cash flows (£1,000,000 × MIN[1.75-S1,0]) 

 Total of option transactions: 

 £1,000,000 × (1.75 - S1)           = $1,750,000 - (£1,000,000 × S1)  

 Exchange of Currency              =                      (£1,000,000 × S1) 

 Time zero cash flows                = $     36,800 

 Interest on Time zero flows      = $          552 

TOTAL TIME ONE CASH FLOWS    = $1,787,352 

 

This cash flow of $1,787,352 is assured in the absence of default risk. 

 

E. Exotic Options 

 As described earlier, options confer the right but not obligation to buy or sell an 

underlying asset at a striking price on or before the option expiration date. We discussed earlier 

the "plain vanilla" options with the most simple terms. A variety of other options, generally 

known collectively as exotic options, exist to fulfill a variety of financial needs. In this chapter, 

we will discuss a small sampling of the many classes of categories of exotic options and a 

sampling of option types in these classes. 
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Locking in Profits 

 As we will discuss in greater detail in the next chapter, collar is a combination of options 

designed to maintain the investor's profit (or loss) in an underlying asset within a specified range. 

For example, a long position in a put will protect the investor in an underlying asset from price 

decreases. The cost of this long position in the put can be offset by the investor selling a call on 

the same asset, thereby giving up some of his profits should the underlying asset value rise. 

Hence, the investor, by buying a put and selling a call, locks in his profits within a given range. 

A zero-cost collar is a package of options (for example, a long call and short put) designed to 

require zero net investment. Typically, the exercise price of the put is set at a level relative to the 

exercise price of the call so that their values exactly offset each other.  

Similarly, a long position in a Range Forward Contract enables (and obliges) its owner 

to purchase the underlying security at time T value for the following price: (X1 if ST ≥ X1; ST if 

X1 >ST ≥ X2; or X2 if ST < X2). This position replicates a short position in a collar. If the objective 

were to replicate a long position in a zero-cost collar, the two exercise prices would be set so that 

no initial net investment is required to enter into the contract. These collars are very useful for 

investors who wish to lock in profit levels of their investments without selling their securities. 

 

Path Dependent Options 

 A path dependent option’s payoff is a function of the path that the underlying asset takes 

prior to option exercise. Thus, the exercise price of the option is not a simple constant as in the 

case of a plain vanilla option. 

 An Asian Option (average rate) is based on the average price (or exchange rate) of the 

underlying asset (or currency). For example, an Asian call on currency permits its owner to 

receive the difference between the average underlying asset price over the life of the option (AT) 

and the exercise price (X) associated with the option: CA,T = MAX(0, AT - X) where AT = ∑St/n. 

A potential user of an Asian option might be an exporter who sells her production to a particular 

country the same number of units of its product each day. Since the exchange rate will vary 

daily, the revenues received by the exporter will vary. The Asian option enables the exporter to 

stabilize her cash flows without entering the derivatives market on a daily basis. The cash flow 

structures of these options vary from contract to contract. For example, some contracts call for 

the payoff to be related to the difference between the time T spot rate and the average exchange 

rate realized during the life of the option. 

 A lookback option enables its owner to purchase (or sell in the case of a put) the 

underlying security at the lowest price (or highest price in the case of a put) realized over the life 

of the option. Such options might be very desirable for an investor who wishes to take a position 

in the underlying asset but lacks the ability to time this transaction so that he buys at the lowest 

price or sells at the highest realized price over a given period of time. 

 A barrier option is similar to a "plain vanilla" option except that it expires (in the case of 

a down-and-out option) or is activated (in the case of up-and-in option) once the underlying asset 

value reaches a pre-specified price. These are often referred to as either knock out or knock in 

options. 

 

Other Exotic Options 

A chooser option provides its owner to choose at time t1 < T between converting the 

chooser option to either a plain vanilla call or put that expires at time T. At the time of choosing 

t1, the chooser option is valued as: 
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𝑐𝑐,𝑡1
= 𝑀𝐴𝑋[𝑐𝑡1

, 𝑝𝑡1
] = 𝑀𝐴𝑋[𝑐𝑡1

, 𝑐𝑡1
+ 𝑋𝑒−𝑟𝑓𝑇−𝑡1 − 𝑆𝑡1

] = 𝑐𝑡1
+ 𝑀𝐴𝑋[0, 𝑋𝑒−𝑟𝑓(𝑇−𝑡1) − 𝑆𝑡1

] 

 

Thus, the time zero (or time t1) value of a chooser option with choice date t1 and expiration date 

T is equivalent to a portfolio made up of a call option with exercise price X that expires at time T 

and a put with exercise price Xe-rf(T-t1). 

 Rainbow options are written on two or more assets. A rainbow call may give its owner 

the right to choose between any of two or more assets. 

 A digital option pays either 1 or 0, depending on the occurrence of a particular event. For 

example, a digital option might pay 1 if and only if a terminal stock price exceeds an exercise 

price, and pay zero otherwise. 
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Exercises 

 

1.  Consider a compound call on a call with exercise price X1 = 5, expiring in six months (T1 = 

.5) on an equity call, with exercise price X2 = 75, expiring in one year (T2 = 1). The stock 

currently sells for S0 = 70 and has a return volatility equal to 𝜎 = .4. The riskless return rate 

equals r = .05. What is the value of the compound call?  

 

2.  Suppose that S1 and S2 are random variables. In our exchange option discussion, we claimed 

that we could measure the variance of logarithmic of price relatives of the two assets relative to 

one another with a particular variant of 2: 

𝜎
𝑙𝑛(

S1
S2

⁄ )

2 = 𝜎𝑙𝑛(S1)
2 + 𝜎𝑙𝑛(S2)

2 − 
1,2
𝑙𝑛(S1)𝑙𝑛(S2) 

  a.  Demonstrate more generally that Var[S1-S2] = Var[S1] + Var[S2] - Cov[S1,S2]. 

  b.  Based on your demonstration for part a, demonstrate the following: 

𝜎
𝑙𝑛(

S1
S2

⁄ )

2 = 𝜎𝑙𝑛(S1)
2 + 𝜎𝑙𝑛(S2)

2 − 2
1,2
𝑙𝑛(S1)𝑙𝑛(S2) 

 

3.  Six-month currency options on Thai Baht (THB) denominated in U.S. dollars with exercise 

prices equal $0.03. The U.S. interest rate is .03 and the Thai rate is .10. The current exchange 

rate is $0.032/THB and the standard deviation associated with the exchange rate is .01. What is 

the value of this FX call? What is the value of a put with the same exercise terms? 

 

4.  A currency option series on Australian dollars (AUD) denominated in U.S. dollars. Suppose 

that a 2-year call option is available on AUD with an exercise price equal to $0.65. The U.S. 

interest rate is .04 and the Australian rate is .06. The current exchange rate is $0.7/AUD and the 

standard deviation associated with the exchange rate is .3. What is the value of this currency 

call? What is the value of a put with the same exercise terms? 

 

5.  The Smedley Company sold products to a Japanese client for ¥15,000,000. Payment is due six 

months later. Relevant data is as follows: 

 Spot exchange rate: ¥105/$ 

 Japanese Borrowing interest rate: 9.0% 

 U.S. Borrowing interest rate: 7.0% 

 Japanese Lending interest rate: 7.0% 

 U.S. Lending interest rate: 5.0 % 

There exist currency call and put options with the following terms: 

 Size of options contracts: ¥1,000,000 

 Term to expiration of options contracts: 6 months 

 Exercise price of put and call: $.009/¥ 

 Put Premium: $0.00001/¥ 

 Call Premium:$.0001/¥ 

 Brokerage cost per options contract: $50 

Discuss the implications associated with each of the options-based methods for managing the 

transactions exposure risk associated with this extension of credit. 

 

6.  A chooser option (or, as you like it option) is sometimes held to allow its owner to benefit 

from underlying security volatility, as in 1991, when the Persian Gulf War led to high levels of 
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price volatility in oil markets. The standard chooser option allows its owner at a choice date 0 < 

tc < T to choose between the option taking the form of a plain vanilla call or a put. Thus, on the 

choice date tc, the owner of the standard chooser option decides if he wishes the option to be a 

plain vanilla call or a put for the remainder of its life. 

      a.  Write a function that gives the choice date tc payoff for the standard chooser option in 

terms of the plain vanilla options from which the owner can choose. 

      b.  Making use of the put-call relation for plain vanilla options, evaluate as of time tc the 

plain vanilla put component of the chooser option. 

      c.  Making use of your solution to part b, rewrite the function from part a that gives the 

choice date tc payoff for the standard chooser option in terms of the plain vanilla options from 

which the owner can choose. Comment on your findings. 

      d.  Under what circumstances does the owner of the chooser option select the call on the 

choice date tc? Under what circumstances does the owner of the chooser option select the put on 

the choice date tc?  

      e.  Devise a model to evaluate the chooser option in a Black-Scholes environment. 

      f.  An investor needs to evaluate a one-year chooser option on a non-dividend-paying stock in 

a Black-Scholes environment. The choice date is in 6 months. The riskless return rate is .05 and 

the standard deviation of underlying stock returns is .4. Both the current stock price and the 

exercise price of the chooser option are 50. What is the current value of the chooser option? 
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Solutions 

 

1.  First, we calculate the critical value 𝑆𝑇1
∗  for underlying option exercise at time T1. A search 

process reveals that this equals 66.578906: 

𝑐𝑢,𝑇1 = 𝑆𝑇1
∗ × 𝑁 (

[𝑙𝑛 (
𝑆𝑇1

∗

75
) + (. 05 +

1
2 × .16) × (1 − .5)]

. 4√. 5 − .25
)

−
75

𝑒 .05×(1−.5)
𝑁 (

[𝑙𝑛 (
𝑆𝑇1

∗

75
) + (. 05 −

1
2 × .16) × (1 − .5)]

. 4 × √1 − .5
) = 𝑋1  = 5; 𝑆𝑇1

∗

= 66.578906 

Note that the correlation coefficient between our two random variables is ρ = √. 5/1 = .7071. 

We use the reasoning from Section 5.4 and the bivariate normal distribution to calculate the 

compound call value as follows: 

𝑐0 = 70 × .4834 − 75 × 𝑒−(.05×1) × .3382 − 5𝑒−(.05×.5) × .5494 = 7.03314 

𝑑1 =
[𝑙𝑛 (

70
66.578906

) + (. 05 +
1
2 × .16) × .5]

. 4 × √. 5
= .4070 

𝑑2 = .4070 − .4 × √. 5 = .1241 

𝑦1 =
[𝑙𝑛 (

70
75

) + (. 05 +
1
2 × .16) × 1]

. 4 × √1
= .1525 

𝑦2 = .1525 − .4 × √1 = −.2475 

Thus, we find that the value of this compound call equals 7.03314. The bivariate probabilities 

were calculated using a spreadsheet-based multinomial cumulative distribution calculator. 

 

2.  Suppose that S1 and S2 are random variables. In our exchange option discussion in Section 

7.8.1, we claimed that we could measure the variance of logarithmic of price relatives of the two 

assets relative to one another with a particular variant of 2: 

𝜎
𝑙𝑛(

S1
S2

⁄ )

2 = 𝜎𝑙𝑛(S1)
2 + 𝜎𝑙𝑛(S2)

2 − 
1,2
𝑙𝑛(S1)𝑙𝑛(S2) 

  a.  Demonstrate more generally that Var[S1-S2] = Var[S1] + Var[S2] - Cov[S1,S2]. 

  b.  Based on your demonstration for part a, demonstrate the following: 

𝜎
𝑙𝑛(

S1
S2

⁄ )

2 = 𝜎𝑙𝑛(S1)
2 + 𝜎𝑙𝑛(S2)

2 − 2
1,2
𝑙𝑛(S1)𝑙𝑛(S2) 

 

3. To answer this question, we first calculate d1: 

𝑑1 =
𝑙𝑛 (

. 032
. 03 ) + (. 03 − .1 +

. 012

2
) ∙ .5

. 01√. 5
= 4.180913 

Next we calculate d2: 

 d2 = d1 - T = 4.180913-.007071=4.173842 

Next, find cumulative normal density functions (z-values) for d1 and d2: 

 N(d1) = N(4.180913)  = .99998548 
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 N(d2) = N(4.173842) =  .99998502 

Finally, we value the call as follows: 

 c0 = .032×e-.1×.5×.99998548 - .03×e-.03×.5×.99998502 = $.00088598 

We can evaluate the European put using put-call parity as follows: 

  p0 = c0  + Xe-r(d)T - s0e
-r(f)T = .00088598 + .03e-.03×.5 -  .032e-.1×.5 = .000000001 

The put is valued at slightly more than 0. The estimates for the cumulative normal distributions 

will be great enough to make it appear as though the put has negative value. We'll accept that we 

estimated with error and note that the put value always exceeds zero. 

 

4. To answer this question, we first calculate d1: 

1983.
23.

2
2

3.
04.06.

65.

7.
ln

2

204.

206.

1 =









+−+









=

−

−

e

e

d

 
       Next we calculate d2: 

 d2 = d1 - T = .1983 - .4242 = -.226 

       Next, find cumulative normal density functions (z-values) for d1 and d2: 

 N(d1) = N(.1983)  = .5786 

 N(d2) = N(-.226) = .4106 

       Finally, we value the call as follows: 

 c0 = .65(.5786) - [.7×.8869]×(.4106) = $0.1128 

       We can evaluate a put for this European currency option series using Equation (4) as 

        follows: 

  p0 = c0  + Xe-r(d)T - S0e
-r(f)T = .1128 + .65e-.06×.5 -  .7e-.04×.5 = .092 

 

5. The two relevant options market hedging strategies are the put hedge strategy and the 

conversion. These are described as follows: 

Put Hedge: 

Strategy: Purchase a 6-month put option on ¥15,000,000 with an exercise price of $.009/¥ 

and a premium of $150. Time zero brokerage costs total $750 (15 contracts at $50 

per contract - pretty high, given the premiums involved). Thus the total time zero 

cash outlay is $900. Expressed in terms of future value, the total cash outlay is 

$922.50 since interest forgone on the sum of the premium and brokerage costs 

totals $22.50. 

Result: Receive one of the following in six months: 

1. An unlimited potential maximum less the $922.50 premium and brokerage fees. 

The dollar value of this strategy increases as the value of the dollar drops. 

2. A minimum of $135,000 less $922.50 for a net of $134,077.50. This minimum 

value to be received might be unacceptably low for some managers; however, 

there is upside cash flow potential. 

Conversion or Call and Put Hedge: 

Strategy: Through the combination of short call and long put positions, total risk can be 

eliminated. Consider the writing of a call with an exercise price of $.009 expiring in six months 

along with the purchase of a put with the same terms. The time zero cash flows are summarized 

as follows: 

   Put Premium........ - $   150 Call Premium....... + $ 1,500 
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   Put brokerage fee. - $   750 Call brokerage fee. - $   750 

    Net Time zero cash flows -$150 

Result: The forgone interest on the net time zero outlay is $3.75. If the six month exchange rate 

is less than $.009/¥, the exchange rate of $.009/¥ is locked in by the put. If the exchange rate 

exceeds $.009/¥, the obligation incurred by the short position in the call is activated. Thus, the 

exchange rate of $.009/¥ is locked in no matter what the exchange rate is. The cash flows in six 

months are summarized as follows: 

 Put cash flows  (¥15,000,000 × MAX[.009-S1,0]) 

 Call cash flows (¥15,000,000 × MIN[.009-S1,0]) 

 Total of option transactions: 

 (¥15,000,000 * (.009 - S1)    =  $135,000 -  (¥15,000,000 × S1) 

  Exchange of Currency           =                      (¥15,000,000 × S1) 

 Time zero cash flows           =  $     -150 

 Interest on Time zero flows    =  $          3.75 

    TOTAL TIME ONE CASH FLOWS     =  $134,846.25 

 

6.a.  The time tc payoff function for the chooser option equals MAX[ctc, ptc]. 

        b.  By put-call parity, ptc = ctc + Xe-r(T-tc) - Stc 

        c.  MAX[ctc, ptc] = MAX[ctc, ctc + Xe-r(T-tc) - Stc] = ctc + MAX[0, Xe-r(T-tc) - Stc]. Pay special 

attention to the far right side of this equality because we will use it to value the chooser option. 

The far right side of the equality implies that the time tc payoff function for a chooser option is 

the equivalent of a portfolio of a call on the underlying, with exercise price X and expiration date 

T plus a put on the underlying with exercise price equal to Xe-r(T-tc) and expiration date tc.  

        d.  The owner of the chooser option selects the call on the choice date if ctc >  ptc, which will 

hold if ctc > ctc + Xe-r(T-tc) - Stc, or if Xe-r(T-tc) < Stc. Otherwise, he selects the put. 

        e.  Based largely on our solution to part c above (in particular, the far right term), we value 

the chooser option as follows: 

𝑉𝑐ℎ𝑜𝑜𝑠𝑒𝑟 = [𝑆0𝑁(𝑑1) −
𝑋

𝑒𝑟𝑇
𝑁(𝑑2)] + [𝑋𝑒−𝑟(𝑇−𝑡𝑐) 𝑁(−𝑑4) − 𝑆0𝑁(−𝑑3)] 

𝑑1 =
ln (

𝑆0

𝑋 ) + (𝑟 +
1
2 𝜎2) 𝑇

𝜎√𝑇
 

𝑑2 = 𝑑1 − 𝜎√𝑇 

𝑑3 =
ln (

𝑆0

𝑋𝑒−𝑟(𝑇−𝑡𝑐)) + (𝑟 +
1
2 𝜎 

2) 𝑡𝑐

𝜎√𝑡𝑐

=
ln (

𝑆0

𝑋𝑒𝑟(−𝑇+𝑡𝑐)) + 𝑟𝑡𝑐 +
1
2 𝜎 

2𝑡𝑐

𝜎√𝑡𝑐

=
ln (

𝑆0

𝑋 ) − ln(𝑒𝑟(−𝑇+𝑡𝑐)) + 𝑟𝑡𝑐 +
1
2 𝜎 

2𝑡𝑐

𝜎√𝑡𝑐

=
ln (

𝑆0

𝑋 ) + 𝑟𝑇 +
1
2 𝜎 

2𝑡𝑐

𝜎√𝑡𝑐

 

𝑑4 = 𝑑3 − 𝜎√𝑡𝑐 

        f.  Value the chooser option as follows: 

𝑉𝑐ℎ𝑜𝑜𝑠𝑒𝑟 = 50 × 𝑁(𝑑1) −
50

𝑒 .05×1
𝑁(𝑑2) + 50𝑒−.05×(1−.5)  × 𝑁(−𝑑4) − 50 × 𝑁(−𝑑3) 

𝑑1 =
ln (

50
50

) + (. 05 +
1
2 × .16) × 1

. 4 × √1
= .325 
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𝑑2 = .325 − .4√1 = −.075 

𝑑3 =
ln (

50
50

) + .05 × 1 +
1
2 × .16 × .5

. 4 × √. 5
= .3182 

𝑑4 = .3182 − .4 × √. 5 = .0354 

𝑉𝑐ℎ𝑜𝑜𝑠𝑒𝑟 = 50 × .6274 −
50

𝑒 .05×1
× .4701 + 50𝑒−.05×.5  × .4859 − 50 × .3752 = 9.011 + 4.352

= 13.363 
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Appendix 12.A: Cumulative Standard Normal Bivariate Density Function 

 

 

 

 
 

This table is truncated, depicting cumulative densities between -2.0 and 2.0, and with only 

significant digits to within .01. More complete tables and more accurate values can be found in 

the spreadsheet for the course, Knopf and Teall [2015], Drezner [1978] or in a variety of 

locations on the web. 

0

0.05

0.1

0.15

0.2

  -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

-2 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0 0 0 0 0 0 0 0 

-1.8 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0 0 0 0 0 0 

-1.6 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.03 0.03 0.02 0.01 0.01 0.01 0 0 0 0 0 

-1.4 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.07 0.06 0.06 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0 0 0 0 

-1.2 0.02 0.03 0.05 0.06 0.07 0.08 0.09 0.09 0.09 0.08 0.07 0.06 0.05 0.03 0.02 0.02 0.01 0.01 0 0 0 

-1 0.02 0.04 0.05 0.06 0.08 0.09 0.1 0.11 0.11 0.1 0.09 0.08 0.06 0.05 0.04 0.02 0.02 0.01 0.01 0 0 

-0.8 0.02 0.04 0.05 0.07 0.09 0.1 0.12 0.13 0.13 0.13 0.12 0.1 0.09 0.07 0.05 0.04 0.02 0.02 0.01 0.01 0 

-0.6 0.02 0.03 0.05 0.07 0.09 0.11 0.13 0.14 0.15 0.15 0.14 0.13 0.11 0.09 0.07 0.05 0.03 0.02 0.01 0.01 0 

-0.4 0.02 0.03 0.05 0.06 0.09 0.11 0.13 0.15 0.17 0.17 0.17 0.15 0.13 0.11 0.09 0.06 0.05 0.03 0.02 0.01 0.01 

-0.2 0.02 0.03 0.04 0.06 0.08 0.1 0.13 0.15 0.17 0.18 0.18 0.17 0.15 0.13 0.1 0.08 0.06 0.04 0.03 0.02 0.01 

0 0.01 0.02 0.03 0.05 0.07 0.09 0.12 0.14 0.17 0.18 0.18 0.18 0.17 0.14 0.12 0.09 0.07 0.05 0.03 0.02 0.01 

0.2 0.01 0.02 0.03 0.04 0.06 0.08 0.1 0.13 0.15 0.17 0.18 0.18 0.17 0.15 0.13 0.1 0.08 0.06 0.04 0.03 0.02 

0.4 0.01 0.01 0.02 0.03 0.05 0.06 0.09 0.11 0.13 0.15 0.17 0.17 0.17 0.15 0.13 0.11 0.09 0.06 0.05 0.03 0.02 

0.6 0 0.01 0.01 0.02 0.03 0.05 0.07 0.09 0.11 0.13 0.14 0.15 0.15 0.14 0.13 0.11 0.09 0.07 0.05 0.03 0.02 

0.8 0 0.01 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.1 0.12 0.13 0.13 0.13 0.12 0.1 0.09 0.07 0.05 0.04 0.02 

1 0 0 0.01 0.01 0.02 0.02 0.04 0.05 0.06 0.08 0.09 0.1 0.11 0.11 0.1 0.09 0.08 0.06 0.05 0.04 0.02 

1.2 0 0 0 0.01 0.01 0.02 0.02 0.03 0.05 0.06 0.07 0.08 0.09 0.09 0.09 0.08 0.07 0.06 0.05 0.03 0.02 

1.4 0 0 0 0 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.07 0.06 0.06 0.05 0.04 0.03 0.02 

1.6 0 0 0 0 0 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.03 0.03 0.02 

1.8 0 0 0 0 0 0 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.02 0.02 

2 0 0 0 0 0 0 0 0 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 


