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IV. MODERN PORTFOLIO THEORY 
 
1. Elementary Portfolio Arithmetic 
 A portfolio is simply a collection of investments held by an investor. It may be reasonable 
to be concerned with the performance of individual securities only to the extent that their 
performance affects overall portfolio performance. Thus, the performance of the portfolio is of 
primary importance. The return of an investor's portfolio is simply a weighted average of the 
returns of the individual securities that within it. The expected return of a portfolio may be 
calculated either as a function of potential portfolio returns and their associated probabilities (as 
computed in earlier sections) or as a simple weighted average of the expected individual security 
returns. Generally, the portfolio variance or standard deviation of returns will be less than a 
weighted average of the individual security variances or standard deviations. 
 
Portfolio Return 
 The expected return of a portfolio may be calculated using Equation 1 where the subscript 
p designates the portfolio and the subscript j designates a particular outcome out of m potential 
outcomes: 
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 For many portfolio management applications, it is useful to express portfolio return as a 
function of the returns of the individual securities that comprise the portfolio: 
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 The subscript i designates a particular security, and weights wi are the portfolio 
proportions. That is, a security weight wi specifies how much money is invested in security i 
relative to the total amount invested in the entire portfolio. For example, wi is: 
 

                        $ invested in security 1         
               w1 =     Total $ invested in the portfolio     

 
Thus, portfolio return is simply a weighted average of individual security returns. 
 
Portfolio Risk 
 We can also define portfolio return variance as a function of potential portfolio returns 
and associated probabilities: 
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It is important to note that the variance of portfolio returns usually is not simply a weighted 
average of individual security variances. In fact, in some instances, we can combine a series of 
highly risky assets into a relatively safe portfolio. The risk of a portfolio in terms of variance of 
returns can be determined by solving the following double summation: 
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When a portfolio is comprised of only two securities, its variance can be determined by Equation 
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Larger portfolios require the use of Equation 4 or a variant of Equation 5 accounting for all 
products of security weights and standard deviations squared and all possible combinations of 
pair-wise security covariances and weight products. 
 The implication of the covariance terms in Equations 4 through 5 is that security risk can 
be diversified away by combining individual securities into portfolios. Thus, the old stock 
market adage “Don't put all your eggs in one basket” really can be validated mathematically. 
Spreading investments across a variety of securities does result in portfolio risk that is lower than 
the weighted average risks of the individual securities. This diversification is most effective 
when the returns of the individual securities are at least somewhat unrelated; that is, lower 
covariances i,j result in lower portfolio risk. Similarly, the reduction of portfolio risk is 
dependent on the correlation coefficient of returns ij between securities included in the 
portfolio. Since the covariance between security returns i,j equals the product iji,j, 
covariance will reflect the correlation coefficient. Thus, the lower the correlation coefficients 
between these securities, the lower will be the resultant portfolio risk. In fact, as long as ij is less 
than one, which realistically is always the case between non-identical securities, some reduction 
in risk can be realized from diversification. 
 
A Simple Derivation of Portfolio Variance 
 To derive the variance of portfolio p as a function of security variances, covariances and 
weights as in Equation 4, we begin with our standard variance expression as a function of m 
potential portfolio return outcomes j and associated probabilities as in Equation 3: 
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For the sake of simplicity, let the number of securities n in our portfolio equal two. From our 
portfolio return expression, we may compute portfolio variance as follows: 
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Next, we complete the square for Equation A and combine terms multiplied by the two weights 
to obtain: 
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Next, we bring the summation term inside the brackets: 

(C) ii

n

i
p PRERw 2

11
1

2
1

2 ])][([  


 ii

n

i

PRERw ]])[([ 2
22

2
2

1




 

     iii

n

i

PRERRERww ])][])([([2 2211
1

21  


 

We complete our derivation by noting our definitions for variances and covariances as follows: 
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which is a special case of Equation 4. Similar derivations can be performed for portfolios 
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comprising more than two securities. 
 
Simple Numerical Illustration: Two Security Portfolio 
 For many portfolio management applications, it is useful to express portfolio return as a 
function of the returns of the individual securities that comprise the portfolio. This is often 
because we want to know how a particular security will affect the return and risk of our overall 
holdings or portfolio. For example, consider a portfolio made up of two securities, one and two. 
The expected return of security one is 10% and the expected return of security two is 20%. If 
forty percent of the dollar value of the portfolio is invested in security one (that is, [w1] = .40), 
and the remainder is invested in security two ([w2] = .60), the expected return of the portfolio 
may be determined by Equation (2):   
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If the standard deviation of returns on securities one and two were .20 and .30, respectively, and 
the correlation coefficient i,j between returns on the two securities were .5, the resulting 
standard deviation of the portfolio would be .23, the square root of its .0504 variance level: 
(4) 2305322  pp   

 
Diversification and Security Return Correlations 
 Diversification is simply holding multiple assets whose returns are not perfectly 
correlated. There are two ways to reduce risk through portfolio diversification: 

 Select securities with lower pairwise correlations between returns (Pick unlike securities). 
 Increase the number of securities in the portfolio. 

However, this list oversimplifies diversification; a bit of focus is needed on appropriate security 
combinations or weights. Nevertheless, we will focus here on selecting securities that fit our 
portfolio as we begin our preamble to the efficient set of portfolios. 
 In our first example, the weighted average of the standard deviation of returns of the two 
securities one and two is 26%, yet the standard deviation of returns of the portfolio they combine 
to make is only 23%. Clearly, some risk has been diversified away by combining the two 
securities into the portfolio. In fact, the risk of a portfolio will almost always be lower than the 
weighted average of the standard deviations of the securities that comprise that portfolio. 
 For a more extreme example of the benefits of diversification, consider two securities, 
three and four, whose potential return outcomes are perfectly inversely related. Data relevant to 
these securities is listed in Table (1).  If outcome one occurs, security three will realize a return 
of 30%, and security four will realize a 10% return level. If outcome two is realized, both 
securities will attain returns of 20%. If outcome three is realized, securities three and four will 
attain return levels of 10% and 30%, respectively. If each outcome is equally likely to occur ([Pi] 
is .333 for all outcomes), the expected return level of each security is 20%; the standard 
deviation of returns for each security is .08165. The expected return of a portfolio combining the 
two securities is 20% if each security has equal portfolio weight ([w3] = [w4] = .5), yet the 
standard deviation of portfolio returns is zero. Thus, two relatively risky securities have been 
combined into a portfolio that is virtually risk-free. 
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 
 
TABLE 1: Portfolio return with perfectly inversely correlated securities.  W3 =W4 = 0.5 

I R3i R4i Rpi Pi 

1 .30 .10 .20 .333 

2 .20 .20 .20 .333 

3 .10 .30 .20 .333 

 
 

 
 Notice in the previous paragraph that we first combined securities three and four into a 
portfolio and then found that portfolio's return given each outcome. The portfolio's return is 20% 
regardless of the outcome; thus, it is risk free. The same result could have been obtained by 
finding the variances of securities three and four, the correlation coefficient between their 
returns, then solving for portfolio variance with Equation (6) as in Table (2). 
 
 

 
 
TABLE 2: Portfolio return with perfectly inversely correlated securities. 
   Given: 
                             20.03 R                                20.04 R   

 3=0.08165  4=0.08165  w3=0.50   w4=0.50 14,3   
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00003333.00016667.00016667.0 p  

 
 

 
 
 The implication of the two examples provided in this chapter is that security risk can be 
diversified away by combining the individual securities into portfolios. Thus, the old stock 
market adage "Don't put all your eggs in one basket" really can be validated mathematically. 
Spreading investments across a variety of securities does result in portfolio risk that is lower than 
the weighted average risks of the individual securities. This diversification is most effective 
when the returns of the individual securities are at least somewhat unrelated; or better still, 
inversely related as were securities three and four in the previous example. For example, returns 
on a retail food company stock and on a furniture company stock are not likely to be perfectly 
positively correlated; therefore, including both of them in a portfolio may result in a reduction of 
portfolio risk.  From a mathematical perspective, the reduction of portfolio risk is dependent on 
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the correlation coefficient of returns (i,j) between securities included in the portfolio. Thus, the 
lower the correlation coefficients between these securities, the lower will be the resultant 
portfolio risk. In fact, as long as (ij) is less than one, which, realistically is always the case, 
some reduction in risk can be realized from diversification. 
 Consider Figure (1). The correlation coefficient between returns of securities C and D is 
one. The standard deviation of returns of any portfolio combining these two securities is a 
weighted average of the returns of the two securities' standard deviations. Diversification here 
yields no benefits. In Figure (2), the correlation coefficient between returns on Securities A and 
B is .5. Portfolios combining these two securities will have standard deviations less than the 
weighted average of the standard deviations of the two securities. Given this lower correlation 
coefficient, which is more representative of "real world" correlations, there are clear benefits to 
diversification. In fact, we can see in Figures (3) and (4) that decreases in correlation coefficients 
result in increased diversification benefits. Lower correlation coefficients result in lower risk 
levels at all levels of expected return. Thus, an investor may benefit by constructing his portfolio 
of securities with low correlation coefficients. 
 

 
 

 
Figure 1: Relationship between portfolio return and risk when CD=1 

 
 
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 
 

 
    Figure 2: Relationship between portfolio return and risk when AB=.5 

 

 
  Figure 3: The relationship between portfolio return and risk when EF=0 

 
 
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 
 

 
         Figure 4: The relationship between portfolio return and risk when GH=-1 

 
 
Portfolio Diversification: Adding More Securities 
 In Derivation Box 1, we see how adding additional securities beyond 2 further decreases 
portfolio risk. Thus, the two keys for diversifying portfolio risk are to select securities with low 
correlation coefficients with respect to one another and to select many securities. In the next 
section, we will discuss portfolio efficiency and how it improves as additional securities are 
added to a portfolio. In fact, one of the most important problems in portfolio management 
concerns the selection of security weights that minimize portfolio risk at a given return level. For 
example, suppose that a security analyst has provided a portfolio manager with estimates 
concerning security expected returns, variances and covariances. The portfolio manager must 
determine how much to invest in each of the securities, subject to various constraints. If the 
portfolio manager seeks either to maximize expected portfolio return at a given risk level or 
minimize portfolio risk at a given expected return level, she will select a portfolio from the 
Efficient Set, a process that we will discuss later.  
 From a computational perspective, Equation 4 for portfolio variance becomes unwieldy 
as we increase the number (n) of securities in the portfolio. This is largely due to the fact that we 
need to not only consider the returns variance for each of the n securities in the portfolio, we 
need to consider each of the n2 returns covariances for each pair of securities i and j in the 
portfolio. So, for example, a calculation of portfolio variance 2 for a 50-security portfolio would 
need to account for 50 security variances i

2 and 2,500 pairwise covariances I,j (actually, half 
that because i,j i,j = j,i less the 50 variances). Use of matrix arithmetic is very useful in 
portfolio math calculations. 
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Derivation Box 1: Demonstrating That Portfolio Risk Decreases as Portfolio Size Increases 
 
Portfolio diversification results from two conditions: correlations between securities in the 
portfolio and the number of securities in the portfolio. This proof is concerned with the second 
condition. First, we define portfolio variance as follows: 
 
(A) 𝜎𝑝
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For sake of simplicity, we assume the following: 
  1. Our portfolio is equally weighted; that is, wi = wj = 1/n for each security weight. 
  2. All securities have the same variance, i. 
  3. Each security has the covariance with every other security. This covariance will be equal 

to the average covariance between pairs of securities. 
  4. The average security variance in an equally weighted portfolio is larger than the average 

covariance with other securities. This condition must hold in all cases unless all security 
returns are perfectly correlated. When all security returns are perfectly correlated, return 
variances will equal covariances. 

These assumptions permit us to rewrite Equation A as follows: 
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First, note that Σ=1(1/n) is the mean of the security variances. Also, note that there are n terms 
related to security variances and n(n-1) covariance terms. The average covariance is written: 
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Since the average covariance term will be added (n-1) times, we now write portfolio variance as 
follows:  
(D)      𝜎𝑝
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To demonstrate that portfolio variance decreases as n increases, we merely demonstrate that the 
derivative of σp

2 with respect to n is negative: 
 

(E)      
𝑑𝜎𝑝

2

𝑑𝑛
=  −𝑛−2൫𝜎ത 𝑖

2 −  𝜎ത 𝑖,𝑗൯ < 0 
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Portfolio Arithmetic with Matrices 
 The portfolio return Rp is simply a weighted average of the individual security returns Rj. 
We denote the weights by wi, so that: 

wi= ($invested in i)/($ invested in p). 
If we express the vector of individual returns by r = (R1,…,Rn)T and the vector of weights by w = 
(w1,...,wn)T, we can express the portfolio return Rp as follows: 
    𝑅௣ = ∑ 𝑤௜𝑅௜

௡
௜ୀଵ =wTr. 

Taking the expectation of both sides of this equation, we see that the expected return of the 
portfolio in terms of the expected value of each of the individual returns satisfies the equation: 

𝐸ൣ𝑅௣൧ = ෍ 𝑤௜𝐸[𝑅௜].

௡

௜ୀଵ

 

Portfolio return variance is a function of potential portfolio returns and associated probabilities 
or individual security weights and covariance pairs: 
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where V = (σi,j) is the n × n matrix of return covariances. 
 
Portfolio Arithmetic with Matrices: Illustration 
 Suppose that the expected returns of three assets A, B and C are .1, .2 and .3, 
respectively; rT = [.1, .2, .3]. Their standard deviations are .2, .3 and .4. The returns covariance 
between assets A and B is .03, the returns covariance between assets A and C is .04 and the 
returns covariance between assets B and C is .06. Thus, the variance-covariance matrix for the 
securities is (recall that the covariance between anything and itself is variance): 

𝑽 = ൥
. 04 . 03 . 04
. 03 . 09 . 06
. 04 . 06 . 16

൩ 

Let’s further suppose that the following weights: wA = .625, wB = .25 and wC = .125 apply to our 
portfolio; wT = [.625, .25, .125]. The following equations calculate the expected return and 
returns variance for our portfolio: 

E[rp] = 𝒘்𝒓 =  [. 625 . 25 . 125] ൥
. 1
. 2
. 3

൩ =  .15 

Derivation Box 1: Demonstrating That Portfolio Risk Decreases as Portfolio Size Increases 
(cont.) 

 
which will be true whenever the average security variance exceeds the average covariance 
between non-identical securities. This will be the case whenever the correlation coefficient 
between security returns is less than one. 
 Note from Equation D that as the number of securities in the portfolio approaches 
infinity, the portfolio's risk approaches the average covariance between securities. Thus, only 
covariance risk is significant for large, well- diversified portfolios. If security returns are entirely 
independent (ij = 0), portfolio risk approaches zero as the number of securities included in the 
portfolio tends towards infinity. 
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𝜎௣
ଶ =  𝒘𝑻𝑽𝒘 = [. 625 . 25 . 125] ൥

. 04 . 03 . 04

. 03 . 09 . 06

. 04 . 06 . 16
൩ ൥

. 625
. 25

. 125
൩ = .043125 

Such systems should be much easier to work with, particularly on a spreadsheet than the 
equations that we expressed earlier. 
 
2. The Efficient Set 
 This section is concerned with the investor's concern for maximizing expected returns 
and for minimizing risk. We will first consider, from a theoretical perspective, investor 
preferences for return and for safety by examining indifference mappings in expected return-risk 
space. We will then, from both theoretical and practical perspectives, develop the most efficient 
set of portfolios of risky assets (stocks). Finally, we will supplement the set of risky assets with a 
riskless asset (bonds) for the purpose of determining the best portfolio for a given investor to 
invest in. 
 
Indifference Mappings 
 An indifference curve is a locus of points (curve) representing the various combinations 
of two choices (perhaps, goods) to which an individual is indifferent. Therefore, an individual 
receives the same level of satisfaction (or, in economic terms, utility) from all combinations of 
two goods falling on the same indifference curve. An indifference map is simply a series of one 
individual's indifference curves. 
 Indifference curves between two goods that are neither perfect substitutes nor perfect 
complements generally have the following characteristics: 
 
  1. They are downward sloping, indicating that more of either good is preferred to less of 

that good. Thus, a reduction in the quantity of one good must result in the increase in the 
quantity of the second good if that individual's utility level is to remain unchanged. 

  2. They are convex to the origin of the map indicating diminishing marginal utility with 
respect to both goods. (See Figure 1) 

 
Figure 1: Indifference Curve in Two-Commodity Space 

 
 An indifference map, which is composed of an infinite number of indifference curves will 
have the following attributes: 
 

A 

U1  

x1

    
x
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  1. The individual's level of utility will increase as the quantities of both goods increase. 
Therefore, utility increases as an individual is able to attain combinations on higher 
indifference curves (curves further to the northwest on the indifference map as in Figure 
2). 

  2. None of the indifference curves on the map will intersect. Intersecting indifference curves 
violate the property of transitivity. (See Figure 3) 

 
Figure 2: Indifference Map in Two-Commodity Space 

 
Figure 3: Violation of the Principle of Transitivity1 

 
 Figure 2 depicts an individual's indifference map for various combinations of two goods, 
x1 and x2. However, consider an indifference map for two commodities, one of which is a good 
and the other a "bad." For example, the typical investor prefers more return to less return; 
however, he will prefer less risk to more risk. Thus, return is a good and risk is a "bad". Figure 4 
depicts an indifference map for an investor faced with these choices. Notice that since risk is a 
"bad", the horizontal axis has been reversed. Indifference curves are similarly reversed. The new 

 
1 Combination B lies on a higher indifference curve than does C, meaning that it is preferred to C. Combination A 
results in the same utility level as does combination C. Combination A results in more of both goods to the 
individual than B, thus it must be preferred to B, thus, preferred to C, which cannot be since it is on the same 
indifference curve. Because of this inconsistency, the principle of transitivity has been violated. 
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indifference map between a good and a "bad" is similar to a mirror image of the original 
indifference map between two goods. Now utility increases as safety or the absence of risk 
increases. Thus, utility increases as standard deviation becomes smaller. Indifference curves are 
upward sloping, reflecting that increases in risk must result in increases in return in order to 
maintain constant utility. Furthermore, utility increases as the investor's combination of risk and 
return levels fall on indifference curves further to the northeast. Thus, the indifference map 
portrayed by Figure 4 is created by horizontally reversing the map in Figure 2. 
 

 
 
 

 
Figure 4: Investor's indifference map for risk and return 

 
 

 
 
 An investor's degree of risk aversion is reflected on his indifference map by the slopes of 
his indifference curves. A highly risk averse investor will have very steep indifference curves, 
reflecting that, given constant utility, even a small increase in the level of risk he is faced with 
must result in a substantial increase in his level of return (See Figure 5a). A less risk averse 
investor will require only a small increase in his return level as compensation for a comparable 
increase in his risk level. Thus, the slopes of an investor's indifference curves represent his 
preferences with respect to risk and return. The exact levels of return and risk where an investor 
chooses to invest will depend on the characteristics of available portfolios as well as his 
preferences depicted by his indifference map. Thus, in the following sections, we will determine 
which are the best of all portfolios available to the investor, then use his indifference map to 
determine which portfolio he will hold. This process is quite similar to the combination of an 
indifference map and budget constraint in micro-economics. 
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Figure 5.a: Indifference map for extremely Figure 5.b: Indifference map for a less 
risk averse investor.     risk averse investor.     
 
Developing the Efficient Frontier 
 We just discussed investor preferences with respect to expected return and risk. Now, we 
will focus on portfolios made of individual securities. Because investors prefer as much return 
and as little risk as possible, the most efficient portfolios are those with the following 
characteristics:
    1.      Less risk than all portfolios with identical or larger returns and 
    2.      Greater return than all portfolios with identical or less risk. 
Efficient portfolios are not dominated by other portfolios. One portfolio dominates a second 
when one of the following three conditions is met: 
    1.      the first portfolio has both higher return and smaller risk levels than does the second, 
    2.      both portfolios have identical variance but the first portfolio has a higher return level 

than does the second, or 
    3.      both portfolios have identical returns but the first portfolio has a smaller variance than 

does the second. 
A portfolio is considered dominant if it is not dominated by any other portfolio. Thus, the most 
efficient portfolios are all dominant. 
 Consider a market where the average coefficient of correlation between returns on 
securities is .8. (This is a reasonable assumption in some countries.) For sake of simplicity, 
assume that there exist in this market five securities, (A) through (E). Combine securities (A) and 
(B) into a portfolio. Return and risk combinations of the resultant portfolio will fall somewhere 
on the curve extending between the two securities, depending on their relative weights (See 
Figure 6). Similarly, securities (B) and (C) can be combined into portfolios as can securities (C) 
and (D), and (D) and (E) (See Figure 6). We have constructed a series of curves representing 
risk-return combinations of an infinite number of two security portfolios. These resultant 
portfolios themselves can be combined into additional portfolios. For example, consider 
portfolios (AB) and (BC) in Figure 7. These portfolios can be combined into further portfolios as 
can portfolios (BC) and (CD) as well as (CD) and (DE). The resultant portfolios can all be 
combined into additional portfolios. Notice that as the portfolios become more diversified, they 
become more efficient. Thus, the curves representing the risk-return combinations of these 
portfolios fall further to the northeast on the risk-return space. However, the benefits of this 
diversification must reach a limit. This is because the portfolios that are being combined are 
more correlated than the individual securities that they contain. On the curve indicating this limit, 
further diversification cannot result in more efficient portfolios. The upward sloping portion of 
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this curve is called the Efficient Frontier. The most efficient portfolios of risky assets will have 
risk-return combinations falling on the efficient frontier. The Efficient Frontier represents the 
risk-return combinations of the most efficient portfolios in the feasible region. (The feasible 
region is simply the risk-return combinations of all portfolios available to investors.) Thus, the 
Efficient Frontier is the left-most, uppermost boundary of the feasible region. 

 
Figure 6: Portfolio risk-return    Figure 7: Portfolio risk-return levels when ij=.8 
levels when AB=.8    for all i and j; portfolios are each comprised of      
      two securities A through E. 

  
Figure 8: Efficient frontier and  Figure 9: Combinations of risky asset      

 feasible region   portfolio and the risk-free asset 
 

 

 In reality, there exists no risk-free asset. However, for computational purposes, it is 
useful to assume the existence of such an asset. Historical evidence suggests that short-term 
United States Treasury bills have been among the most reliable in actually realizing the returns 
expected by investors. By purchasing treasury bills, an investor is loaning the government 
money. The United States government has proven to be an extremely reliable debtor (at least it 
makes good on all of its treasury bills). Treasury bills are fully backed by the full faith and credit 
of the U.S. government that has substantial resources due to its ability to tax citizens and create 
money. Thus, these securities are safer than the safest of corporate bonds or short-term notes. 
Because the United States Treasury bill seems to be the safest of all investments, its 
characteristics are often used as surrogates for the characteristics of the risk-free asset. 
 By definition, the variance (or, standard deviation) of expected returns on the risk-free 
asset is zero. Thus, an investor purchasing such an asset will certainly receive the return he 
originally expected. Though this asset is riskless, the investor will require a return, compensating 
him for inflation and his time value of money. This risk-free rate of return (rf) can be 
approximated with the short-term treasury bill rate. 
 The risk-free asset can be combined with any portfolio of risky assets. Such a portfolio 
will have a risk-return combination which is simply a weighted average of the risky portfolio's 
and the risk-free asset's risk-return combinations. For example, consider a portfolio of risky 
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assets with expected return and standard deviation levels of 10% and 20% and a risk-free asset 
with an expected return of 5%. If the portfolio and the risk-free asset were combined into a new 
portfolio with equal weights (wf = wm = .5), the resultant portfolio would have expected return 
and standard deviation levels of 7.5% and 10%: 
           
           075.)05.5(.)10.5(. pRE   

     )001.5.5(.2)05(.)20.5(. 2222 p          10.)0()0()04.25(. p   

 
Notice that the correlation coefficient between returns on any risky asset and the risk-free asset 
must be zero. Thus, both portfolio expected returns and portfolio standard deviations will be a 
linear combination of the individual security returns and standard deviations only when (ij) = 1 
or, as in this case, when a risk-free asset is combined with a risky investment. 
 If an investor has the opportunity to borrow money at the risk-free rate of return (rf), he 
has the opportunity to create a negative weight (wf) for the risk-free asset. For example, if an 
investor had an initial wealth level of $1000, but wished to invest $3000 in a risky asset with an 
expected return of 10%, he could borrow $2000 at the risk-free rate of 5% if the lender were 
certain the investor would fulfill his debt obligation. Since the investor is borrowing money 
rather than lending (buying treasury bills is, in effect, lending the government money), the 
weight associated with the risk-free asset is negative. Because the total sum invested in the risky 
asset is three times as great as the investor's initial wealth level, (wA) is equal to 3. The investor's 
expected portfolio return level is 20%, higher than the return of either of the assets comprising 
the portfolio: 
 

  20.)10.3()05.2( pRE   

 
Notice that the sum borrowed is twice as great as the investor's initial wealth level, thus (wf) is 
equal to -2. The standard deviation of returns on the portfolio is .6: 
                                                                                         

   )020.032(2)20.3()02( 2222 p                6.36.)20.3( 22 p  

 
Notice that the portfolio standard deviation is higher than the standard deviations of either of the 
assets comprising the portfolio. Therefore, borrowing money (creating leverage) permits the 
investor to increase his expected returns; however, he must also face additional risk. Whether an 
investor will borrow, and exactly how much he will borrow will be discussed later. 
 Consider an investor who has the opportunity to invest in a combination of a risk-free 
asset and one of several risky portfolios (A) through (E) depicted in Figure 10. Which of these 
five portfolios is the best to combine with the risk-free asset? Notice that the portfolios with 
risk-return combinations on the line connecting the risk-free asset and portfolio (C) dominate all 
other portfolios available to the investor. Thus, any portfolio whose risk-return combination falls 
on lines extending through portfolios (A), (B), (D), and (E) will be dominated by some portfolio 
whose risk-return combination is depicted on the line extending through portfolio(C). This line 
has a steeper slope than all other lines between the risk-free asset and risky portfolios. The 
investor's objective is to choose that portfolio of risky assets enabling him to maximize the slope 
of this line; that is, the investor should pick that portfolio with the largest possible (Θp), where 
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(Θp) is defined by Equation (8): 
  

(8)         
 

p
p

fp rRE





                                   . 

 
Therefore, the investor should invest in some combination of portfolio (C) and the risk-free asset. 
If the curve connecting portfolios (A) through (E) were the Efficient Frontier, then portfolio (C) 
would be referred to as the market portfolio. This is because every risk averse investor in the 
market should select this portfolio of risky assets to combine with the riskless asset. Notice that 
the line extending through portfolio (C) is tangent to the curve at point (C). 
 

 
 

 
Figure 10: Combination of risk-free asset with one of five portfolios of risky assets 
 
The Capital Market Line 
 The best portfolio of risky assets to combine with the risk-free security lies on the 
Efficient Frontier, tangent to the line extending from the risk-free security. This line is referred to 
as the Capital Market Line (CML). Notice that portfolios on the Capital Market Line dominate 
all portfolios on the Efficient Frontier. If a risk-free security exists, the Capital Market Line 
represents risk-return combinations of the best portfolios of securities available to investors. 
Thus, an investor's risk-return combinations are constrained by the Capital Market Line. 
 The most efficient portfolio on the Efficient Frontier to combine with the riskless asset is 
referred to as the Market Portfolio (depicted by [M] in Figure 11).  Thus, the Market Portfolio 
lies at a point of tangency between the Efficient Frontier and the Capital Market Line. All 
investors should hold portfolios of risky assets whose weights are identical to those of the 
Market Portfolio. The Capital Market Line combines the Market Portfolio with the riskless asset. 
This line can be divided into two parts: the lending portion and the borrowing portion. If an 
investor invests at point (M) on the Capital Market Line, all of his money is invested in the 
Market Portfolio. If he invests to the left of (M), his portfolio is a lending portfolio. That is, he 
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has purchased treasury bills, in effect, lending the government money, and invested the 
remainder of his funds in the Market Portfolio. If he invests to the right of point (M), he has a 
borrowing portfolio. In this case, he has invested all of his funds in the Market Portfolio and 
borrowed additional money at the risk-free rate to invest in the Market Portfolio. All investors 
will invest at some risk-return combination on the Capital Market Line. Exactly which 
risk-return combination an investor will choose will depend on the investor’s level of risk 
aversion. 
 

 

 
Figure 11: The Capital Market Line 

 
 Consider a simple example where there exist two risky securities 1 and 2 in the stock 
market of Noplacia. A particular investor in this market has projected the following 
characteristics for these stocks along with an 8% riskless Treasury bill: 

  12.1 RE                                                     
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  18.2 RE  
There also exists a riskless treasury instrument (bill) available for investors of Noplacia. The 
expected return or implied interest rate on this bill is 8%. Given this interest rate and the above 
stock projections, determine: 
 
  1. the stock weightings for the optimal portfolio of risky securities for this investor 
  2. the expected return of his portfolio of stocks, 
  3. the risk of his stock portfolio, as measured by standard deviation, 
  4. the characteristics of the Capital Market Line faced by this investor; that is, what is the 

equation for the Capital Market Line? 
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 Since our objective is to select a portfolio of the two risky assets such that the slope of the 
Capital Market Line is maximized, we will select stock portfolio weights such that θp is 
maximized. To accomplish this, we will find partial derivatives of θp with respect to weights of 
each of the two stocks, set the partial derivatives equal to zero and solve for the weight values w1 
and w2. We accomplish this in Derivation Box 1. 
 As we seen in Derivation Box 2, the system of equations we solve to obtain the Capital 
Market Line in our 2-security economy is given by equation set 9:  
 
(9)                                  2,12

2
111  zzrRE f                                    

                                               2
221,212  zzrRE f   

 
Substituting in appropriate values from our example, we find that: 
 
.                                  21

2 01.2.08.12. zz   

                                  2
2

1 4.01.08.18. zz   
 
that yields: 

                                     21 01.04.04. zz   

                             21 16.0110. zz    
 
Solving the above simultaneously yields z1 = 1.174603 and z2 = .698412. Since E[Rp], rf and p 
are the same for both z1 and z2, portfolio weights w1 and w2 will be linearly related to their z 
values. Thus, the portfolio weights are determined as follows: 
 
                             627.)( 2111  zzzw  

                             373.)( 2122  zzzw   
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Derivation Box 2: Deriving the Capital Market Line 
 Since our objective is to select a portfolio of the two risky assets such that the slope of the Capital 
Market Line is maximized, we will select stock portfolio weights such that θp is maximized. To 
accomplish this, we will find partial derivatives of θp with respect to weights of each of the two stocks, set 
the partial derivatives equal to zero and solve for the weight w1 and w2. First, we write p for the simple 
two stock portfolio as follows: 
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Next, we use the quotient rule to find the derivative of θp with respect to w1 and w2: 
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However, we need to use the chain rule to find the derivative of the denominator with respect to w1 and 
w2: 
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Notice from equation (A) that the derivative of (E[Rp]-rf) with respect to w1 equals (E[R1]-rf). Next, we 
substitute our results of equation set (C) into equation set (B) making use of the far-right hand side of 
equation (A): 
(D)  

𝜕𝜃𝑝

𝜕𝑤1

=
൫𝐸[𝑅1] − 𝑟𝑓൯𝜎𝑝 − ൫𝐸ൣ𝑅𝑝൧ − 𝑟𝑓൯൫𝑤1

2𝜎1
2 + 𝑤2
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Because the derivatives from Equation Set D are both set equal to zero, we may multiply the numerator 
by p and maintain the equality. Next, we re-write Equation Set D as follows: 
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To continue the process of simplification, define the variable zi as 𝑧𝑖 =  𝑤𝑖൫𝐸ൣ𝑅𝑝൧ − 𝑟𝑓൯/𝜎𝑝
2 

 and re-write equation set (D) as follows: 

                          2,12
2
111  zzrRE f           

                         2
222,112  zzrRE f   

This is the general format for deriving the set of equations needed to solve for characteristics and 
composition of the Capital Market Line. Extending this system to accommodate more risky securities is 
straightforward; there will be one z-value and one equation for each risky security. 
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The return and risk levels of the portfolio (m) of risky stocks are simply: 
 
                                  142.18.373.12.627. mRE  

                                    1825.)01.(373.627.216.373.04.627.
5.22 m  

 
Thus the answers to the four problems proposed earlier are as follows: 
 
 1. w1 = .627, w2 = .373 
 2. E[Rm] = .142 
 3. m = .1825 
 4. The equation for the Capital Market Line is given as follows: 
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This process is easily expanded to include as many securities as may exist in the market. Matrix 
mathematics may simplify computations when the number of securities is large. The Efficient 
Frontier can be plotted by varying the riskless rate; an additional "market portfolio" is obtained 
each time a new riskless return is used in the computations. 
 
3. The Capital Asset Pricing Model 
 The Capital Asset Pricing Model (CAPM) provides us with a theory of equilibrium in 
capital markets. That is, when the assumptions of the CAPM are met, expected utility 
maximizing investors will price securities in the market in a manner consistent with the CAPM. 
The assumptions that underlie the CAPM are: 
 
1. Capital markets are perfect. The assumption of perfect capital markets requires: 

a. zero transactions costs; that is, investors and corporations can buy and sell securities 
without incurring brokerage fees. 
b. zero personal income taxes. 
c. that investors are able to secure full and costless information. 
d. that no single investor can affect the market price of a security by his transactions. 

2. Security returns are normally distributed; therefore, expected utility is a function of expected 
return and risk levels of an investor's portfolio. 
3. All assets are marketable and infinitely divisible.      
4. No restrictions are placed on short-sales. (See Glossary) 
5. Investors all have identical expectations regarding security expected return and risk levels. 
6. There exists a risk-free security with no restrictions on borrowing and lending. 
7. Investor planning horizons are one time period. 
 
If these assumptions hold, we can use the Capital Asset Pricing Model to estimate the risk of an 
investment and also to calculate a discount rate for a present value analysis of that investment. 
Systematic risk is that portion of a security's risk that is related to variance of the market 
portfolio. Systematic risk is sensitivity to market portfolio fluctuations. Thus, systematic risk is 
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often referred to as market related risk. Unsystematic risk is that portion of a security's variance 
that is totally unrelated to risk of the market portfolio; that is, unsystematic risk (or firm-specific 
or unique risk) is unique to the security under analysis. For example, the potential death of the 
company's chief executive officer may affect firm performance and may be regarded as a firm-
specific or unsystematic risk.  
 The required return of any security will be related to a risk-free component compensating 
investors for inflation and their time values of money and premiums compensating investors for 
both market related and unique risk (though, as we shall see later, unique risk compensation will 
be zero for a perfectly diversified portfolio). Market related risk of a security can be measured as 
the standard deviation of returns associated with that security relative to the standard deviation of 
returns associated with the market portfolio multiplied by the coefficient of correlation between 
returns on the security and the market portfolio: 

(8)           mi
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i
i ,




   

 Thus, Beta (βi) measures the risk of security (i) relative to the risk of the market portfolio. 
The coefficient of correlation relates to the reduction in portfolio risk realized by including 
security (i) in a well- diversified portfolio. If the standard deviation of expected returns on 
security (A) and the market portfolio were .4 and .2, respectively, and the correlation coefficient 
between returns on the two securities were .75, the Beta (A) of security (A) would be 1.5: 
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 Notice that Equation (8) can be rewritten as follows: 
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 Betas are normally computed on the basis of historical standard deviations and 
correlation coefficients. Many investors believe that the relative stability over time of these 
statistical measures justifies the use of "historical" betas. Historical betas are computed on the 
basis of historical standard deviations and correlation coefficients. Frequently, analysts will 
compute historical stock betas, standard deviations and correlation coefficients based on five 
years of historical monthly returns data. Several investment advisory services such as Value Line 
will provide historical betas for a large number of widely traded stocks. 
 By definition, the market portfolio (or "average" security) requires a risk premium of 
(rm - rf). Therefore, an investor requires this premium to compensate for the risk associated with 
the "average" security. In fact, the systematic risk premium required by any investor for any 
security (i) is: 
 
(10)         (rri - rf) = i(rm - rf)                . 
 
Notice that, since (m,m) = (m

2), and (m,m) = 1, the beta of the market portfolio equals one. 
 If an investor assumes additional unsystematic (unique) risk by the purchase of a security, 
he will require an unsystematic risk premium. This premium will be unrelated to the market 
portfolio; thus, it will be unique to each individual security. The total risk premium required by 
an investor for the purchase of security (A) will be: 
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(11)        (rrA - rf) = A(rm - rf) + µA             . 
 
 Covariances between the non-market related return components between securities in a 
well-diversified portfolio will, on average, equal zero. We find, using time-series data, that on 
average, securities earn returns equal to the risk-free return plus their required systematic risk 
premium components. Therefore, the unsystematic risk premium required by an investor holding 
a well-diversified portfolio will be zero. We can ignore the (µA) component of Equation (11) for 
shareholders with well-diversified portfolios. Therefore, the return required by any investor to 
purchase any security (i) will be: 
 
(12)                rri = rf +i(rm - rf) 
 
This is the Capital Asset Pricing Model. The CAPM enables us to determine the required return 
for any investment, given its risk characteristics and the current risk-free rate of return. Thus, an 
investor must expect to receive the required return on an investment in order to purchase it. If 
capital markets function according to the assumptions outlined earlier, security prices will be 
such that the expected returns on all securities will equal their required returns. Although many 
of these assumptions do not hold in reality, the CAPM still provides us with good 
approximations of required security returns. Nonetheless, there exist a number of variations of 
the CAPM that have been adjusted to adapt to more realistic market conditions.  
 If the required return on the market portfolio were .14 and the current risk-free rate were 
.06, the required return for security (A) described above would be .18: 
 
              rrA = .06 + 1.5(.14 - .06) = .18        . 
 
 The required rate of return generated by the Capital Asset Pricing Model provides an 
excellent risk-adjusted discount rate useful for evaluating a variety of investments. This 
risk- adjusted discount rate reflects inflation and investors' time value of money through its 
risk-free component. The CAPM reflects investors' risk-return preferences through the market 
systematic risk premium (rm - rf). Furthermore, the model reflects the risk of the security under 
evaluation through the Beta (i) component. Therefore, any security can be evaluated by 
determining its Beta (i), plugging it into the CAPM, and then discounting projected cash flows 
using the required rate of return as a discount rate:  
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(12)        rri = rf + i(rm - rf) 
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 Thus, if security (A) were expected to pay a $10 dividend in each of the next three years 
and then be sold for $100, its current value would be $82.61: 
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                       $10            $10         $10 + $100 

          PVA =  (1+.18)1  + (1+.18)2  +   (1+.18)3     = $82.61   . 
 
The Securities Market Line 
 The Securities Market Line (Figure 12) is a graphical representation of the Capital Asset 
Pricing Model. The required returns for securities are plotted against their risk levels (βi). If the 
market is pricing securities efficiently, every security will have an expected return corresponding 
to its Beta level on the Securities Market Line. If the market does exhibit pricing inefficiencies, 
expected security returns may differ from their required levels. Securities whose expected returns 
exceed their required levels will earn higher than normal profits and therefore should be 
purchased. Securities whose expected returns fall below the Securities Market Line will earn less 
than normal profits and thus should be sold. If, in an efficient market, investors are buying those 
securities whose returns lie above the SML, this buying pressure will cause the purchase prices 
of these securities to rise, thereby decreasing their returns. This buying pressure will force 
returns back to the Securities Market Line. Similarly, securities whose returns lie beneath the 
SML will produce selling action, bidding down prices and forcing returns back up to the 
Securities Market Line. 
 

 
Figure 12: Securities Market Line.  
Note: Security A is underpriced, generating too high a return. Security C is overpriced. Thus, every investor should 
want to purchase A, bidding up its price, sell C, bidding down its price until the returns of both are equal to RB. 
 
 The beta of a portfolio is simply a weighted average of the betas of its component 
securities. According to the Capital Asset Pricing Model Theory, one can replicate the systematic 
risk of any investment by constructing a portfolio with security weights such that the portfolio 
beta equals the investment beta. If the expected return on the portfolio is not exactly the same as 
the expected return on the investment, one can obtain a "free" return. For example, if the return 
on the investment exceeds that of the portfolio with the same beta, one should sell the portfolio 
with the low return to raise cash to purchase the investment with the higher return. No net cash 
flow is used because the sale proceeds were used to finance the purchase. No risk has been 
assumed because the beta on the sold portfolio was exactly the same as the beta of the purchased 
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investment. Yet since the sold portfolio return was lower than that of the purchased investment, a 
profit has been obtained at no cost. Such a transaction is called a profitable arbitrage transaction - 
it involves a profit with zero net investment and zero risk. In this case, unsystematic risk is 
assumed to be unimportant because it can be diversified away. 
 
Deriving the Capital Asset Pricing Model 
 Earlier, we discussed the derivation of the Efficient Frontier and the Capital Market Line 
based on the assumed desire of investors to minimize portfolio variance while maximizing 
returns. Thus, our problem was to maximize θp, the slope of a line with vertical intercept equal to 
rf and tangent to the Efficient Frontier: 
 

(1) 
 

0



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
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Now, define the term  = (E[Rm – rf)/p

2 as the market price of risk in that it represents the risk 
premium required by investors for a given level of variance of returns on portfolio p. The series 
of portfolio weights wi which maximize p represent weights of the market portfolio. As we saw 
earlier in our derivation of the Capital Market Line, we determine this series of portfolio weights 
through the use of the Chain and Product Rules, obtaining a system of equations with the 
following format for each of n securities i: 
 
(2)    ][ ,

2
,22,11 inniiiifi wwwwrRE     

 
As an aside, we define the market return and the covariance between returns on the market and 
Security i as follows: 
 
(3)   ][][][ 2211 nnm REwREwREwRE    

 
(4)  ][[, iimi RERE    ]])[(][ 22111 RERwRERw n    

 
This covariance between returns on Security i and on the market is written in expectations format 
as follows. Moving the expectations operators inside of the brackets yields: 
 
(5)    ])][(][[ 111, RERREREw iimi    ])][(][[ nniin RERREREw   

 
Note that the inside terms are covariances, enabling us to rewrite Equation (6) as follows: 
 
(6) ][ ,

2
,22,11, inniiiimi wwww      

 
With Equation (6) defining the covariance between returns on Security i and the market 
portfolio, we can rewrite Equation (2) as follows: 
 
(7)   mifi rRE ,  
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which is easily rewritten as follows: 
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
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CAPM: Second Derivation 
 The CAPM is concerned with the pricing relationships among securities and the 
relationships among expected security returns r. The investor portfolio problem is to select n 
portfolio weights wi so as to minimize portfolio risk 𝜎௣

ଶsubject to some target return rp as 
follows:1 
 

min
𝒘

𝜎௣
ଶ = 𝒘𝑻𝑽𝒘 

𝒘்𝒓 =  𝑟௣ 
𝒘்𝜾 = 1 

 
This problem is solved with the following Lagrangian: 
 

𝐿 = 𝒘𝑻𝑽𝒘 − 𝝀𝟏൫𝒘 ்𝒓 −  𝑟௣൯ − 𝝀𝟐(𝒘்𝜾 − 1) 
 
with first-order conditions as follows: 
 

𝛁L(𝐰) = 2𝐕𝐰 − λଵ𝐫 − λଶ𝜾 = 𝟎 
 

∂L

∂λଵ
= 𝐰୘𝐫 – r୮ = 0 

 
∂L

∂λଶ
= 𝐰୘𝛊 –  1 = 0 

 
The first-order conditions implied by the gradient can be expressed based on the second line 
given the following LaGrangian: 

𝐿 =  ෍ ෍ 𝑤௜

௡

௝ୀଵ

௡

௜ୀଵ

𝑤௝𝜎௜,௝ − 𝝀𝟏 ൭෍ 𝒘𝒊

𝒏

𝒊ୀ𝟏

𝑬[𝑹𝒊] −  𝑟௣൱ −  𝝀𝟐 ൭෍ 𝒘𝒊

𝒏

𝒊ୀ𝟏

− 1൱ 

 
 

𝜕𝐿

𝜕𝑤௜
= 2𝜎௜,ଵ𝑤ଵ +  2𝜎௜,ଶ𝑤ଶ +  … +  2𝜎௜,௡𝑤௡ −  𝐸[𝑟௜]λଵ − λଶ = 0 

 
And then simplified as follows: 
 

 
1 𝑽 is the security variance-covariance matrix, 𝒘  is a vector of portfolio weights, 𝒘𝑻 is the transpose of that vector 
and 𝜾 is the unit vector. 
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2 ෍ 𝜎௜,௝𝑤௝

௡

௝ୀଵ

=  𝐸[𝑟௜]λଵ − λଶ 

 
For, example, since the riskless asset f has zero variance and zero covariance with respect to all 
other assets, its first order condition can be written as follows:  
 

0 =  𝐸ൣ𝑟௙൧λଵ − λଶ 
 
Subtracting these two first-order conditions leads to the following:  
 

2 ෍ 𝜎௜,௝𝑤௝

௡

௝ୀଵ

=  𝐸ൣ𝑟௜ −  𝑟௙൧λଵ 

 
Because of the following equality:2 

෍ 𝜎௜,௝𝑤௝

௡

௝ୀଵ

=  𝜎௜,௠ 

 
We can write the following for security i and market portfolio m: 
 

2𝜎௠,௜ =  𝐸ൣ𝑟௜ −  𝑟௙൧λଵ 
 

2𝜎௠,௠ =  𝐸ൣ𝑟௠ −  𝑟௙൧λଵ =  2σ୫
ଶ  

 
This means that we can solve for λ1 as follows: 
 

λଵ =  
2σ୫

ଶ

𝐸ൣ𝑟௠ −  𝑟௙൧
 

 
Now, substitute this into earlier equations: 
 

2 ∑ 𝜎௜,௝𝑤௝
௡
௝ୀଵ =  2𝜎௠,௜ = 𝐸ൣ𝑟௜ −  𝑟௙൧λଵ =  𝐸ൣ𝑟௜ −  𝑟௙൧ 

ଶ஢ౣ
మ

ாൣ௥೘ି ௥೑൧
 

 

2𝜎௠,௜ = 𝐸ൣ𝑟௜ −  𝑟௙൧ 
ଶ஢ౣ

మ

ாൣ௥೘ି ௥೑൧
 

 

 
2 This equality is obtained as follows:  ][[, iimi RERE    ]])[(][ 22111 RERwRERw n   . 

Moving the expectations operators inside of the brackets yields:   ])][(][[ 111, RERREREw iimi 
  ])][(][[ nniin RERREREw  . The inside terms are covariances, enabling us to rewrite this equation 

as follows: ][ ,
2

,22,11, inniiiimi wwww    . Also, w was substituted for x. 
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𝐸ൣ𝑟௜ −  𝑟௙൧ =  
ఙ೘,೔

஢ౣ
మ 𝐸ൣ𝑟௠ −  𝑟௙൧ 

 
Where βi = 

ఙ೘,೔

஢ౣ
మ , this final expression represents the Capital Asset Pricing Model. The CAPM 

enables us to determine the required return for any investment, given its risk characteristics and 
the current riskless rate of return. Thus, an investor must expect to receive the required return on 
an investment in order to purchase it. If capital markets function according to the assumptions 
outlined earlier, security prices will be such that the expected returns on all securities will equal 
their required returns. Although many of these assumptions do not hold in reality, the CAPM still 
provides us with good approximations of required security returns. Nonetheless, there exist a 
number of variations of the CAPM that have been adjusted to adapt to more realistic market 
conditions. 
 
Portfolio Selection Illustration 
 Suppose that the expected returns of the three assets A, B and C in an economy are .1, .2 
and .3, respectively. Their standard deviations are .2, .3 and .4. The returns covariance between 
assets A and B is .03, the returns covariance between assets A and C is .04 and the returns 
covariance between assets B and C is .06. Assuming that the Capital Asset Pricing Model holds 
in this economy, we want to derive some financial market characteristics. To begin with, we 
want to determine the weights of this optimal or lowest risk portfolio if based on a target 
portfolio return of 15%, which equals the MRT (Marginal Rate of Transformation) for this 
economy. 
 First, since the expected portfolio return is .15 and the weights must sum to 1, the 
LaGrange function is written as either of the following: 
 

𝐿 =  .04𝑤஺
ଶ + .09𝑤஻

ଶ + .16𝑤஼
ଶ + 2 ∙ .03𝑤஺𝑤஻ + 2 ∙ .04𝑤஺𝑤஼ + 2 ∙ .06𝑤஻𝑤஼

+ 𝜆ଵ(. 15 −. 1𝑤஺ −. 2𝑤஻ − .3𝑤஼) + 𝜆ଶ(1 − 𝑤஺ − 𝑤஻ − 𝑤஼) 
or: 
 

 L = [𝑤஺ 𝑤஻ 𝑤஼] ൥
. 04 . 03 . 04
. 03 . 09 . 06
. 04 . 06 . 16

൩ ൥

𝑤஺

𝑤஻

𝑤஼

൩ 

−𝜆ଵ[𝑤஺ 𝑤஻ 𝑤஼] ൥
. 1
. 2
. 3

൩ + .15𝜆ଵ − 𝜆ଶ[𝑤஺ 𝑤஻ 𝑤஼] ൥
1
1
1

൩ + 1𝜆ଶ 

 

First order conditions are follows, which combines 𝛁L(𝐰) = 𝟎, 
ப୐

பλభ
= 𝐰୘𝐫 – r୮ = 0 and 

ப୐

பλమ
=

𝐰୘𝛊 –  1 = 0, the latter two of which are slightly rearranged: 
 

⎣
⎢
⎢
⎢
⎡
. 08 . 06 . 08
. 06 . 18 . 12
. 08 . 12 . 32

−.1 −1
−.2 −1
−.3 −1

−.1 −.2 −.3
−1 −1 −1

0 0
0 0 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑤஺

𝑤஻

𝑤஼

𝜆ଵ

𝜆ଶ ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0
0
0

−.15
−1 ⎦

⎥
⎥
⎥
⎤

 

          V*          w*  = o* 
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We invert Matrix V* then solve for Vector w*. We find the following weights: wA = .625, wB = 
.25 and wC = .125; our LaGrange multipliers are 1 = .225 and 2 = .0525. The expected return 
and standard deviation of portfolio returns are .15 and .207665, respectively: 
 

   E[rp] = 𝒘்𝒓 =  [. 625 . 25 . 125] ൥
. 1
. 2
. 3

൩ =  .15 

 

  𝜎௣
ଶ =  𝒘𝑻𝑽𝒘 = [. 625 . 25 . 125] ൥

. 04 . 03 . 04

. 03 . 09 . 06

. 04 . 06 . 16
൩ ൥

. 625
. 25

. 125
൩ = .043125 

 Based on a step from our CAPM derivation, we can solve the following for this 
economy's riskless return rate rf: 
 

𝐸ൣ𝑟௠ −  𝑟௙൧λଵ =  2σ୫
ଶ  

 

𝑟௙ =  −
ଶσౣ

మ

λభ
+ 𝐸[𝑟௠] =  −

ଶ×.଴ସଷଵଶହ

.ଶଶହ
+ .15 = -.2333 

 
Note that this is an odd result with a negative interest rate, but, still consistent with the Capital 
Asset Pricing Model. 
 Suppose that we wanted to calculate the covariance between returns on security A and 
returns on the market. Again, based on a step in the CAPM derivation, we do so as follows: 
 

2𝜎௠,௜ =  𝐸ൣ𝑟௜ −  𝑟௙൧λଵ 
 

𝜎௠,஺ =  
𝐸ൣ𝑟஺ −  𝑟௙൧λଵ

2
=

𝐸[. 1 + .23333] × .225

2
= .037496 

 
Since βi = 

ఙ೘,೔

σౣ
మ , the beta of security A is .037496/.043125 = .869478 = βA.  

 
CAPM: Empirical Tests 

Does the CAPM work? More precisely, to what extent does the Capital Asset Pricing 
Model explain the variation structure of security returns? Most of the earlier tests of the CAPM 
were quite supportive of the model, finding linear relationships between stock and market 
returns, statistically significant betas and returns being unrelated to unsystematic returns (e.g., 
Sharpe and Cooper [1972], Black, Jensen and Scholes [1973], Miller and Scholes [1972]). 
However, Roll [1977] made a very convincing argument of the untestability of CAPM, citing, 
among other issues, our inability to correctly discern the market portfolio and its composition, 
being a critical element of every test. Fama and French [1992] were more critical of CAPM, find 
that the relationship between security returns and beta is at best very weak after 1963. Using firm 
size and Book to Market Equity values, Fama and French found that the significance of beta 
disappears in cross-sectional tests with returns. Nevertheless, the empirical strength of CAPM 
remains a controversial issue among both academics and practitioners alike. 
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4. Mathematics Underlying Arbitrage Pricing Theory 
 Arbitrage Pricing Theory is a theory of capital markets equilibrium; that is, it is a theory 
that describes the relationships among security prices under certain assumptions, among which is 
the condition that security returns are linearly related to a set of independent factors (which 
might be related to the market, economy, industries or other source of covariance among security 
returns). Deriving the APT will require some mathematics preparation. 
 
Underlying Mathematics: Orthogonal Vectors 
 Two vectors x and y are said to be orthogonal when xTy = 0. A set of orthogonal vectors 
is linearly independent. Geometrically, the vectors x and y will represent perpendicular lines 
(lines placed at right angles with respect to one another). Symbolically, we write x  y to mean 
that vector x is orthogonal to vector y. 
 One result from linear mathematics that is extremely useful in finance follows from two 
assumptions: 
 
 1. Assume that each vector x in a set {X} of n-1 vectors {x1, x2, ..., xn-1} is 

orthogonal to some other vector w. That is, x1
Tw = 0, x2

Tw = 0 and so on. 
 2. Furthermore, assume that because each of the n-1 vectors in X is orthogonal to w, 

an nth Vector xn must also be orthogonal to Vector w. Thus, xTw = 0. That is, 
assume that the subset of n-1 vectors from set {X} being orthogonal to w implies 
that Vector xn must also be orthogonal to Vector w. 

 
Result: Vector xn must be a linear combination of vectors {x1, x2, ..., xn-1}. 

 
Thus, in order for the orthogonality between each vector in set X and Vector w to imply 
orthogonality between Vector xn and Vector w, Vector xn must be a linear combination of 
vectors {x1, x2, ..., xn-1}. In order for a set of n-1 vectors to make this statement regarding Vector 
xn, xn must be a linear combination of the n-1 vectors that imply that relationship between xn and 
w. 
 Consider the following example where vectors a, b, c, d and w are given as follows: 
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Vectors a, b, and c are all orthogonal to Vector w. That is, pre-multiplication of any one of 
vectors a, b or c vector wT will result in zero: wTa = 0, wTb = 0, wTc = 0. Suppose that the 
orthogonality of a, b and c to w imply that wTd = 0. Then vector d must be a linear combination 
of vectors a, b, and c. Thus, aw, b w, c w and d w, and we can write d as a linear 
combination of a, b and c, or more specifically as follows: 
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d = (.05  a) + (.02   b) + (.04  c) 
 
Thus, Vector d is a linear combination of vectors a, b, and c because these three vectors imply 
that d w. Similarly, if Vector d must be orthogonal to Vector w whenever vectors a, b, and c 
are orthogonal to Vector w, Vector d must be a linear combination of vectors a, b, and c. The 
last statement provides that mathematical foundation to the Arbitrage Pricing Theory. 
 
5. Deriving the APT Model 
Underlying Assumptions 
1.   Capital markets are competitive and frictionless. 
2.   Investors share homogeneous expectations. 
3. Security returns are generated by the following factor model, where r is an n  1 vector of 

security returns in an n security economy,  is an n  (k+1) matrix of factor loadings in an 
economy where security prices are linearly related to k factors or indices, f is a (k+1)  1 
vector of random factor values (a factor value is the difference between the actual index 
value and its expected value) prevailing during the time during which returns are measured, e 
is an n  1 vector of residual return components for securities and fj is the j'th index that 
generates security returns: 

 

   ikikiiii fbfbfbfbRE ~~~~~~
221100     

 or   
 r = f  
 
 where: 
 

 
  jj IEIf 

~
 

   0
~

jfE  

   0
~~

 hj ffE  for hj   

 iR
~

is a random return for security i, 

    gii EE  ~~0~   

 
 4. The number of securities, n, exceeds the number of factors, k. 
 5. Enough securities exist to diversify away unsystematic risk. Thus, wTe = 0. 
 6. Arbitrage opportunities cannot persist. Therefore, investors will not be able to form zero 

net investment, zero-risk portfolios which earn a positive profit. The zero-net investment, 
zero risk portfolio will have the following characteristics: 
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b.    or wT = [0]: Zero Factor or systematic risk 
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i
iw   or wT = 0: zero unique risk 

 
 The sixth assumption implies that the following zero return condition must hold for any 
zero-net investment, zero-risk arbitrage portfolio: 
 

  0
~~~~

11
11

11

 



n

i
ikik

n

i
ii

n

i
ii

n

i
ip wfbwfbwREwR 

 
or 
 
 𝑅෨௣ =  𝒘்𝒓 + 𝒘்𝒇෨ + 𝒘் = 0 

 
where r is the n  1 security expected returns vector. Since there is no risk on this arbitrage 
portfolio, 𝒘்𝒇෨ + 𝒘் = 0, and the security expected returns vector is orthogonal to the weights 
vector: 
 

E[Rp] = i=1wiE[Ri] = wTr = 0 
 
 The Equation a from Assumption 6 above states that the weights vector is orthogonal to 
the unit vector. The Equations b from Assumption 6 state that the weights vector is orthogonal to 
each of the beta coefficients vectors. Equations c from Assumption 6 state that the weights vector 
is orthogonal to the unique return components vector. Thus, these three sets of equations define 
the arbitrage portfolio — the zero net investment risk-free portfolio. The no-arbitrage assumption 
states that the return on this arbitrage portfolio must equal zero. Because orthogonality in the first 
three sets of vectors implies orthogonality in the fourth set of vectors, the returns vector must be 
a linear combination of the unit, betas and epsilons vectors.  
 
The APT 
 Because orthogonality in the first three sets of vectors implies orthogonality in the fourth 
set of vectors, the returns vector must be a linear combination of the unit, betas and epsilons 
vectors. Thus, the securities expected returns vector is orthogonal to the weights vector. 
Therefore, the securities expected return vector must be a linear combination of the unit, beta 
coefficients vector and unique risk components vector (though, the unique risk components has 
an expected value of zero). Thus: 
 

E[Ri] = 0 + 1bi1 + ... + kbik   The APT Model 
 

E[r] =  T    
 

where the  values may be regarded as risk premia or coefficients relating the betas to expected 
returns. Thus, these  values may be interpreted as follows: 
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     0 = rf  the riskless return rate 

   i = fi - rf  factor risk premia for i = 1 to k. 
 
Factor risk premia i may be described as the return on a portfolio with bj = 0 for all indices 
except index i where bi=1. 
 
APT Illustration 
 Consider the following example based on a two-index model that generates security 
returns in a particular economy: 
 

E[Ri] = ai + bi,1f1 + bi,2f2 
 
Suppose that a given portfolio A has an expected return of .13, a beta with index 1 equal to 2 and 
has zero covariance to the second index. Portfolio B has an expected return of .11, is 
uncorrelated with the first index and has a beta of 6 with the second index. Portfolio C has an 
expected return of .10 and has betas equal to one with each of the two indices. 
 We can write the expected returns Vector r, the beta Matrix , the unit Vector i and the 
factor risk premia Vector δ as follows: 
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The expected returns vector might be expressed as follows: 
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We can solve the above for factor risk premia δ0, δ1 and δ2. Alternatively, this system might be 
expressed as a system of equations as follows: 
 

210 02113.0    
210 60111.0    

210 11110.0    

 
The riskless return rate and two-factor risk premia are determined to be as follows:  0 = .05 = rf, 
1 = .04, 2 = .01. 
 Based on the above information, what would be the value of a security whose expected 
total payoff in one period is $100 assuming that its Beta (b1) with 1 is 2 and its Beta (b2) with 2 
is .8? First, we find its expected return to be (.05 + 2  .04 + .8  .01) = .20. Thus, its current 
value is $100/1.2 = 83.333. 
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6. Index Models and Applications of APT 
 The Multi-Index Model enables the analyst to attribute multiple sources of covariance 
between security returns. For example, the analyst might believe that the return structures among 
securities can be attributed to m significant sources Ij. These m significant sources of 
commonality among security returns, Ij could be any set of factors that investors might think 
affect security returns. If the analyst can estimate values for these common factors or indices that 
affect security returns, he should be able to estimate security returns as well as variances and 
covariances. The m-index model can be used to estimate time t returns for security i, expected 
returns, variances and covariances between returns on security i and j as follows: 
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Derivations for these measures of expected return, variance and covariance are identical to those 
for the Single Index Model after adjusting the original statistical measures for the additional 
indices. 
 One important problem from a practical perspective concerns how to obtain indices for 
the Multiple Index Model. Selection of these indices should be based upon the sources of co-
movement among security returns. In the Single Index Model, the index selected is often the 
market portfolio (index, e.g., S&P 500) return. Potential indices for a Multiple Index Model 
might include market index returns, interest rates, commodity prices, financial ratios, firm size, 
and volatility of industry. Any economic or fundamental factor might qualify as an index if it 
captures a significant portion of the co-movement among security prices. 
 
Illustration 5: Multi-Index Model 
 In this illustration, we will examine the returns of a stock and its relationship with two 
indices, which might be the return on the market portfolio (Index 1) and the proportional change 
in the price of a particular commodity. Stock returns and index values are listed in Table 8. 
 
   Year  Return Index 1 Index 2 
   2001 0.15  0.1  -0.2 
   2002 0.25  0.1  -0.02 
   2003 0.5  0.25  0.5 
   2004 0.35  0.25  -0.5 
   2005 -0.27  -0.03  -0.4 
   2006 -0.3  0.08  -0.5 
   2007 0.4  0.3  -0.2 
   2008 -0.28  -0.05  -0.23 
   2009 -0.1  -0.25  -0.34 
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   2010 0.5  0.15  0.1 
 
Table 8: Stock Returns and Index Values 
 
 Regression coefficients for the stock are computed as follows based on an OLS 
regression: i = βi,0 = 0.099129287, βi,1 = 1.154299498 and βi,2 = 0.46377789. If we were to 
assume 2011 values of .05 for Index 1 and -.05 for Index 2, we can make the following statement 
about the expected return of the stock: 
 

 
     22,1, IEIERE iiiii  

 
= .099 + 1.154·.05 + .463·(-.05) = .13355 

 
Variances for the two index values are computed as follows: 𝜎ூ(ଵ)

ଶ  = 0.3298 and 𝜎ூ(ଶ)
ଶ  = 1.1689. 

With this information, we can make the following statement about the stock's variance if we 
ignore unsystematic variances: 
 

  
2
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IiIii   = 1.1542994982·0.3298 + 0.463777892·1.1689 = .690847 
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EXERCISES 
 
1.  An investor wishes to combine Stevenson Company stock and Smith Company stock into a 
riskless portfolio. The standard deviations associated with returns on these stocks are 10% and 
18% respectively. The coefficient of correlation between returns on these two stocks is -1. What 
must be each of the portfolio weights for the portfolio to be riskless? 
 
2. Assume that the coefficient of correlation between returns on all securities equals zero in a 
given market. There are an infinite number of securities in this market, all of which have the 
same standard deviation of returns (assume that it is .5). What would be the portfolio return 
standard deviation if it included all of these infinite number of securities in equal investment 
amounts? Why? (Demonstrate your solution mathematically.) 
 
3.  Investors have the opportunity to invest in any combination of the 5% riskless asset and the 
two risky securities given in the table below: 
 
    (i) E[Ri]  i 1,i  2,i 3,i 
     1 .15 .50 .25   .05 0  
     2 .08 .40 .05   .16 0 
 
   a.  What are the security weights for the optimal (market) portfolio of risky assets? 
   b. What are the market portfolio expected return and standard deviation levels? 
 
4.  An investor with $100,000 has the opportunity to invest in any combination of the securities 
given in the table below: He wishes to select the most efficient portfolio of these four assets such 
that his portfolio standard deviation equals .10. 
 
 SECURITY(i)  E[R]    COV(i,1)   COV(i,2)   COV(i,3)   COV(i,4) 
          1             .05          0    0       0            0 
          2             .10          0   .10      .01          .01 
          3             .15          0   .01      .20           0 
          4             .20          0    .01         0          .30 
 
  a. How much should the investor invest in each security? 
  b. Assuming that the four securities above are the only ones available in the market, what is the 
Beta of Security 3? 
 
5.   An investor has the opportunity to invest in a portfolio combining the following two risky 
stocks: 
 
     Expected   Standard 
  Security  Return  Deviation 
     A    .08     .30  COV(A,B) = 0 
     B    .12     .60 
 
The investor can borrow money at a rate of 6%, lend money at 4% and has $500,000 to invest. 
The investor intends to minimize the risk of her portfolio but requires an expected return of 18%. 



 
37

How much money should she borrow or lend? How much should she invest in each of the two 
stocks? 
 
6.  Investors have the opportunity to invest in any combination of the securities given in the table 
below: 
 
    (i) E[Ri]  i 1,i   2,i 3,i 
     1 .25 .40 .16   .05 0  
     2 .15 .20 .05   .04 0 
     3 .05  0   0       0  0 
 
 Find the slope of the Capital Market Line. 
 
7.  Investors have the opportunity to invest in varying combinations of riskless treasury bills and 
the market portfolio. Investors' investment portfolios will have expected returns equal to [Rp] and 
standard deviations of returns equal to p. Let wm be the proportion of a particular investor's 
wealth invested in the market portfolio. Obviously, the investor's proportional investment in the 
riskless asset is wf = (1-wm). Prove (or derive) the following: 
  a.      mmP w    

  b.         )( fm
m

p
fp rRErRE 




 

Note: If you successfully complete parts a and b, you have derived the equation for the Capital 
Market Line (where the market portfolio characteristics are known). Now, complete part c: 
  c. What happens to the slope of the Capital Market Line as each investor's level of risk 

aversion increases? 
 
8.  How would you expect transactions costs to affect borrowing rates of interest? How would 
lending rates of interest be affected? How would the Capital Market Line be affected by 
transactions costs? 
 
9.  A stock currently selling for $60 has a historical standard deviation of .25 and a coefficient of 
correlation with the market portfolio of .4. Over the same period, the historical standard 
deviation of the market portfolio was .16. Investors anticipate dividends of $2 per share in one 
year at which time the stock can be sold for $65. Determine the following for the stock if the 
current Treasury Bill rate is .05 and the required return on the  market portfolio is .12: 
  a. The stock Beta. 
  b. The required return of the stock.   
  c. The discount rate to be associated with cash flows from the stock.   
  d. The present value of cash flows associated with the stock.  
  e. Whether the stock constitutes a good investment.      
 
10.  Historical returns for Holmes Company stock, Warren Company stock and the market 
portfolio along with Treasury Bill (T-Bill) rates are summarized in the following chart: 
 

Year Holmes 
Co. 

Warren 
Co. 

Market rm-rf T-Bill 



 
38

1986 12%  .04 10%  .04 6% 

1987 18%  .20 14%  .08 6% 

1988 7 %  .02 6 %  0 6% 

1989 3 % -.03 2 % -.04 6% 

1990 10%  .09 8 %  .02 6% 

 

 

  a. Calculate return standard deviations for each of the stocks and the market portfolio. 
  b.  Calculate correlation coefficients between returns on each of the stocks and returns on the 

market portfolio. 
  c. Prepare graphs for each of the stocks with axes (Rit - Rft) and (Rmt - Rft) where Rit is the 

historical return in year (t) for stock (i) ; Rmt and Rmt are historical market and risk-free 
returns in time (t). Plot Characteristic Lines for each of the two stocks. 

  d. Calculate Betas for each of the stocks. How do your Betas compare to the slopes of the 
stock Characteristic Lines? 

 
11.  Consider the Holmes and Warren stocks whose historical returns are given above. Assume 
an investor had combined each of the stocks into a portfolio such that half of his wealth was 
invested in each of the stocks. Calculate the following for the investor's portfolio: 
  a. Historical portfolio standard deviation for the five year period.    
  b. Historical correlation coefficient between the market portfolio and the investor's 

portfolio.  
  c. The portfolio Beta.  
  d. How does this portfolio Beta compare to the Betas of the individual stocks?  
 
12.  Historical returns for the Ripco Fund and the market portfolio along with Treasury Bill 
(T-Bill) rates (rf) are summarized in the following table: 
 

Year    Ripco  Market T-Bill  Year    Ripco  Market T-Bill 
   1  0.35  0.28  0.05    11 -0.07 -0.15 0.05 
   2  0.04  0.05  0.05    12 -0.11 -0.21 0.05 
   3  0.10  0.09  0.05    13  0.42  0.26 0.05 
   4 -0.01 -0.02  0.05    14  0.01  0.04 0.05 
   5  0.38  0.32  0.05    15  0.05  0.08 0.05  
   6  0.31  0.25  0.05    16  0.07  0.11 0.05 
   7  0.33  0.26  0.05    17 -0.01 -0.03 0.05 
   8  0.42  0.30  0.05    18 -0.12 -0.37 0.05 
   9  0.07  0.14  0.05    19  0.33  0.30 0.05 
 10 -0.02 -0.06  0.05    20  0.05  0.13 0.05 

 
   a. Calculate the fund beta over the 20-year period. 
   b. Calculate the fund alpha over the 20-year period. Did the fund outperform the market 

during this period on a risk-adjusted basis?    
 
13.  Which of the following vectors are orthogonal to a vector of ones? 
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14.  Suppose that a given portfolio A has an expected return of .08, beta with index 1 equal to 1.5 
and a beta of 2 with respect to the second index. Portfolio B has an expected return of .18, has a 
beta of 3 with respect to the first index and a beta of 2.5 with respect to the second index. 
Portfolio C has an expected return of .08 and has betas equal to one with each of the two indices. 
What are the three-index expected values implied by the portfolio expected returns? 
 
15.  An analyst has concluded that security returns are related to oil prices and corn prices along 
with the 5% Treasury bill rate. However, he feels that oil prices and corn prices are uncorrelated. 
He has determined that the Beta of Security A with oil prices is .03 and the Beta of Security A 
with corn prices is .4. If oil prices are projected to be 1.25 and corn prices are projected to be .18, 
what return would he forecast for Security A? 
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SOLUTIONS 
 
1.  Here, we want to find that wA value that will set portfolio variance equal to zero. Remember 
that portfolio weights must sum to one. Thus, wB is simply 1 - wA. 

0118.10.218.10. 22222  BABAP WWww  

)1(036.)1(0324.01.0 22
AAAA wwww   

222 036.036.0648.324.0324.01.0 AAAAA wwwww   

0324.1008.0784.0 2  AA ww  
Solve for wA using the quadratic formula: 

,
2
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a

acbb
wA


   where a=.0784, b=-.1008 and c=.0324. 

Plugging in for a, b and c, we find that the portfolio is riskless when wA = .64286. Thus, wB = 
.35714. 
Riskless portfolios can be constructed from risky securities only when their returns are perfectly 
inversely correlated. Even in this case, only one combination of weights results in a riskless 
portfolio. 
 
2.  This would be a perfectly diversified portfolio; its standard deviation will be zero. Portfolio 
variance is determined as follows:    
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3. First, we solve the following linear system for z(1) and z(2): 
 .25z(1) + .05z(2) = (.15-.05) 
 .05z(1) + .16z(2) = (.08-.05) 
 
      z(1) = .38666667 ;  z(2) = .06666667 
    a. Thus, w(1) = .852941 and w(2) = .147049 

b. E[R(m)] = .139706;    2
m = .197881;    m = .444838 

 
4.   For part a, first, note that Security 1 is the riskless asset. We will first find the weights of the 
optimal portfolio of stocks and then find the optimal combination of stocks and bonds. We begin 
by solving the following for z(2), z(3) and z(4): 
 .10z(2) + .01z(3) + .01z(4) = (.10 -.05) 
 .01z(2) + .20z(3) +   0 z(4) = (.15 -.05) 
 .01z(2) +   0 z(3) + .30z(4) = (.20 - .05) 
We find that z(2) =  0.403361, z(3) = 0.479832 and z(4) = 0.486555. This implies that for the 
optimal portfolio of stocks (the market portfolio), w(2) = 0.294479, w(3) = 0.350307 and w(4) = 
0.355215. Now, the investor needs to determine the optimal mix of stocks and bonds. First, 
compute the standard deviation of the three-stock portfolio: 
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Any portfolio on the Capital Market Line must be a linear combination of riskless bonds and the 
market portfolio of stocks. Our target portfolio with a standard deviation equal to .10 must be a 
linear combination of the standard deviations of the riskless asset and of the market portfolio of 
stocks: 

   5.225.

,
2222 02274268.0210.  mmrfmrfmmrfrfP wwwww   

364606.274268./10. mw  

Thus, 36.4606% of the investor’s money should be invested in the stock portfolio and the 
remaining $63,539.4 in riskless bonds. Thus, of the $36,460.6 in stocks, $10,736.9 should be 
invested in Stock 2, $12,772.4 in Stock 3 and $12,951.4 in Stock 4. For part b (which is a bit 
more difficult still), we know from the derivation of the Capital Asset Pricing Model that: 

)( 4,34
2
333,22,3  wwwm   

This implies that: 3,m = .294479*.01 + .350307*.2 + 355215*0 = .0730187 
Since the variance of the market is its standard deviation squared = .075223 and the beta of an 
asset equals its covariance with the market divided by the market variance, the beta of Security 3 
is determined to be: 

 2
,33 mm   .0730187/.075223 = .97069 

 
5.  This problem is complicated by having different borrowing and lending rates. This essentially 
means that there will be two “Capital Market Lines,” one for lending and one for borrowing.  
Notice that the investor’s 18% required return exceeds the return of any of the three securities. 
This means that the investor will probably need to leverage up her portfolio by borrowing in 
order to meet her requirement for expected return. Risky asset portfolio characteristics are found 
from the following: 

 
 .02 = .09z1 +  0z2 ;  z1= .2222 
 .06 =  0 z1 + .36z2 ;  z2= .1667  ; w1=.571  ;  w2=.429 
 E[Rm] = .097 ; wf=(1-wm); E[Rp] = .18 = (1-wm).06 + wm.097 
 .18 = .06 + wm.037   ;   wm = 3.243 ; Borrow $1,121,500 

Invest $1,621,500 in the market - $925,876.5 in security 1 and $695,623.5 in Security 2 
   

 .02 = .09z1 +  0z2 ;  z1= .2222 
 .06 =  0 z1 + .36z2 ;  z2= .1667  ; w1=.571  ;  w2=.429 
 
 E[Rm] = .097 ; wf=(1-wm); E[Rp] = .18 = (1-wm).06 + wm.097 
 
 Now, the allocations of funds to the stock portfolio and to the bonds are made: 
 .18 = .06 + wm x .037   ;   wm = 3.243 ; 1-wm = wf = -2.243;  Borrow $1,121,500 

Invest $1,621,500 in the market: $925,876.5 in security 1 and $695,623.5 in Security 2. 
 
6. Solve the following for z(1) and z(2): 
 .16z(1) + .05z(2) = (.25-.05) 
 .05z(1) + .04z(2) = (.15-.05) 
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      z(1) = .7692308 ;  z(2) = 1.5384616 
 Thus, w(1) = .333333333 and w(2) = .666666667 
 E[R(m)] = .1833  ;  2

m = .0577  ;  m = .2403  ;   = .5547 
 

7.a.   MFMFMMFFP wwww ,
2222 2    

MMMFMMFP wwwww   020 222
 

  b.       mf
m

p
mmmffP wwwREwrEwRE  1;; 


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p
f

m

p
P rRErRErRE 










 

  c. If the derived CML was for a single investor, an increase in risk aversion will lead to an 
increased required risk-premium on the market (Rm), increasing the slope of the CML. If 
the derived CML was for a market of many investors, no single investor will be able to 
affect its slope. In this case, the slope will remain unchanged; an investor will simply 
vary his holdings of the riskless asset. 

 
8. Increase the cost of borrowing: if the borrower pays this cost, borrowing rates increase. 
Decrease the return from lending: lending rates decrease if the lender pays this cost. In summary, 
transactions costs increase interest rates; get two separate lines, one for borrowing and one for 
lending. 
 
9. Given: P0 = 60 a = .25 
  P1 = 65   m = .16 
   am= .40   Rf = .05 
   Div= $2 Rm = .12 
 covam = amam  = .25(.16)(.4) = .016 
    a.  = covam/m2 = .016/(.16)2 = .016/.0256 = .625 
    b. rra = Rf + a(Rm - Rf) = .05 + .625(.12 - .05)   = .05 + .625(.07)  = .09375 
    c. same as b = .09375 

d. PV = CFa/(1+rra) = (65 + 2)/(1 + .09375) = 67/1.09375 = 61.257 
e. The stock is a good buy because PV > P0; $61.257 > $60. 

 
. 10.a. Calculate the variance of risk premiums for market portfolio: 

     
15

)02.02(.)02.04.()02.0()02.08(.)02.04(. 22222
2




m =.008/4=.002 

b. Calculate the covariance between risk premiums on the stock and risk premiums on the 
market portfolio: 


 




m

t

tmtmtHtH
mH n

RERRER

1

,,,,
, 1

))(())((
  

 {[(.06 -.04) * (.04 -.02)  + (.12 -.04) * (.08 -.02) + (.01 -.04) * (0 -.02)  + (-.03-.04) * (-.04 -.02)+ 
(.04 -.04) *(.02 -.02)] /(5-1) 
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4

0)06.()07.()02.()03.()06(.)08(.)02(.)02(. 
  =  .0025 

b. Calculate beta for the stock by dividing the covariance between the stock and market risk 
premiums by the variance of premiums on the market portfolio: 

 25.1
002.

0025.
2

, 
m

mH
H 


  

                  2
, mmwmww    =(.078)(.04)(.909)/ (.04)2  ;  1m  

The betas are the slopes of the characteristic lines.   
 d. See part c for Beta calculations. 
 2/ mhmmhh    = (.0502)(.04)(.996)/(.04)2     = .0548/.04 = 1.25  

  2/ mwmmww      = .078(.04)(.909)/(.04)2  = 1.775  m = 1 

  The betas are the slopes of the characteristic lines. 
 
11. a. First, calculate return standard deviations for each of the stocks and the market portfolio: 

                 



5

1t
hth nRR   = (.12+ .18+ .07+.03+.10)/5 = .10 





5

1t
wtw nRR  = (.04+ .20+ .02+.03+.09)/5 =.064 





5

1t
mtm nRR  = (.10+ .14+.06+.02+.08) / 5=.08 

 

50199.
5

)10.10(.)10.03(.)10.07(.)10.18(.)10.12(. 2
1

22222








 
h  

078128.
5

)064.09(.)064.03.()064.02(.)064.2(.)064.04(. 2
1

22222








 
w  

04.
5

)08.08(.)08.02(.)08.06(.)08.14(.)08.10(. 2
1

22222








 
m  

b. Calculate correlation coefficients between returns on each of the stocks and returns on the 
market portfolio. 





5

1
,,,,, ))())(((

t
tmtmththmh nRERRER  =[{(.12-.10) (.10-.08) + (.18-.10) (.14-.08) + 

(.07-.10) (.06-.08)} + {(.03-.10) (.02-.08) + (.10-.10) ( .08 - .08 )}]  / {5}  

002.
5

0)06.)(07.()02.)(03.()06)(.08(.)02)(.02(.



  

   



5

1
,,,,, ))())(((

t
twtwththwh nRERRER  
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=[{(.12-.10) (.04-.064) + (.18-.10) (.20-.064) + (.07-.10) (.02-.064)} 
 + {(.03-.10) (-.03-.064) + (.10-.10) ( .09 - .064 )}]  / {5}  

00366.
5

0)094.)(07.()044.)(03.()0136)(.08(.)024.)(02(.



  

 





5

1
,,,,, ))())(((

t
twtwththmw nRERRER  

=[{(.04-.064)(.10-.08)+(.14-.08)(.20-.064)+(.06-.08)(.02-.064)}+{(.02-.08)(-.03-.064)+(.08-
.08)(.09-.064)}]/5=.00284  

mh

mh

mh
mhmh Cov 


 ,

,,   = .002/{(.0502)(.04)}= .996 

mw

mw

mw

mw
mw

Cov



 ,,

,    = .00284/{(.078)(.04)}= .909 

    c. The slopes of the lines are the stock Betas. 
    d. Calculate Betas for each of the stocks. How do your betas compare to the slopes of the 

stock characteristic lines? 

 2,
m

mhmhh    = (.0502)(.04)(.996)/ (.04)2  = .0548/.04 =1.25 

2,
m

mwmwh    = (.078)(.04)(.909)/ (.04)2  = 1.775    m = 1 

  The betas are the slopes of the characteristic lines. 
 

12.a. First, calculate risk premiums for both the fund and the market as follows: 
t Rp Rm rf Rp-rf Rm-rf 
1 0.35 0.28 0.05 0.3 0.23 
2 0.04 0.05 0.05 -0.01 0 
3 0.1 0.09 0.05 0.05 0.04 
4 -0.01 -0.02 0.05 -0.06 -0.07 
5 0.38 0.32 0.05 0.33 0.27 
6 0.31 0.25 0.05 0.26 0.2 
7 0.33 0.26 0.05 0.28 0.21 
8 0.42 0.3 0.05 0.37 0.25 
9 0.07 0.14 0.05 0.02 0.09 
10 -0.02 -0.06 0.05 -0.07 -0.11 
11 -0.07 -0.15 0.05 -0.12 -0.2 
12 -0.11 -0.21 0.05 -0.16 -0.26 
13 0.42 0.26 0.05 0.37 0.21 
14 0.01 0.04 0.05 -0.04 -0.01 
15 0.05 0.08 0.05 0 0.03 
16 0.07 0.11 0.05 0.02 0.06 
17 -0.01 -0.03 0.05 -0.06 -0.08 
18 -0.12 -0.37 0.05 -0.17 -0.42 
19 0.33 0.3 0.05 0.28 0.25 
20 0.05 0.13 0.05 0 0.08 
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Next, run a simple ordinary least squares regression of (Rp-rf) on (Rm-rf). The fund’s beta is the 
slope term in the regression and the fund’s alpha is its vertical intercept: 
 
SUMMARY OUTPUT      
Regression Statistics      
Multiple R  0.910030353     
R Square  0.828155243     
Adjusted R Square 0.818608312     
Standard Error  0.079179681     
Observations 20     
      
ANOVA      
  df SS  MS  F  Significance F 
Regression 1 0.543845407 0.543845407 86.74570346 2.63657E-08 
Residual 18 0.112849593 0.006269422   
Total  19 0.656695    
      
  Coefficients Standard Error t Stat  P-value 
Intercept 0.045004834 0.018088349 2.488056431 0.022868369 
X Variable 1 0.895978331 0.096199656 9.313737352 2.63657E-08 
Thus, the fund beta is .8959. 
b.  The fund alpha is .04. Since the alpha is statistically significant at the 5% level, we can 
conclude that the fund has outperformed the market. 
 
13.  Multiply vectors as follows: 

 

  4

1

1

1

691 















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  0
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1

1

4106 

















    

  0

1

1

1

541 

















 
          aT          i   =      4               bT        i   =   0               cT        i    =    0 

 
Vectors b and c are orthogonal to unit vectors. 
 
 
14. We can write the expected returns vector E[r], the beta matrix β, the unit vector i and the 
factor risk premia vector δ as follows: 
 

 
















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






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


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5.23
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
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







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1

1

i


  










2

1





 

 
The expected returns vector is expressed as follows: 
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  
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We can solve the above for δ0, δ1 and δ2 to obtain factor risk premia. This system can also be 
expressed as a system of equations as follows: 
 

210 25.1108.0    
210 5.23118.0    

210 11108.0    

 
In matrix format, our system of equations is as follows: 
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We invert the coefficients (betas) matrix and solve for δ as follows: 
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The riskless return rate and two factor risk premia are determined to be as follows: 0 = .04 = 
rf, 1 = .08, 2 = -.04. 
 
15.    E[Ra] = rf + wao(E(Ro)) + wac(E(Rc)) = .05 + .03(1.25) + .4(.18)  = .05 + .0375 + .072   = 
.1595 
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APPENDIX A: SOLVING SYSTEMS OF EQUATIONS WITH MATRICES 
 
Multiplication of Matrices 
 Two matrices A and B may be multiplied to obtain the product AB = C if the number of 
columns in the first Matrix A equal the number of rows B in the second.1 If Matrix A is of 
dimension m × n  and Matrix B is of dimension n × q, the dimensions of the product Matrix C 
will be m × q. Each element ci,k of Matrix C is determined by the following sum: 

                                  kj

n

j
jiki bac ,

1
,, 



  

 
For example, consider the following product: 
 






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







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1723

1246
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     A               .     B        =         C 
 

 
Matrix C in the above is found as follows: 
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)1212()14()66()912()54()76(

)129()14()67()99()54()77(

129
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     A               .     B        =                              C 
 

Notice that the number of columns (3) in Matrix A equals the number of rows in Matrix B. Also 
note that the number of rows in Matrix C equals the number of rows in Matrix A; the number of 
columns in C equals the number of columns in Matrix B. 
 
Inverting Matrices 
 An inverse Matrix A-1 exists for the square Matrix A if the product A-1A or AA-1 equals 
the identity Matrix I. Consider the following product: 

 



















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


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1

15

4
15

2

30

1

18

42
 

       A              A-1         =     I 
 
 One means for finding the inverse Matrix A-1 for Matrix A is through the use of a process 
called the Gauss-Jordan Method. This method will be performed on Matrix A by first 
augmenting it with the identity matrix as follows: 
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(A)                      







1018

0142




  

 
For the sake of convenience, call the above augmented Matrix A temporarily. Now, a series of 
row operations (addition, subtraction or multiplication of each element in a row) will be 
performed such that the identity matrix replaces the original Matrix A (on the left side). The 
right-side elements will comprise the inverse Matrix A-1. Thus, in our final augmented matrix, 
we will have ones along the principal diagonal on the left side and zeros elsewhere; the right side 
of the matrix will comprise the inverse of A. Allowable row operations include the following: 
 
 1. Multiply a given row by any constant. Each element in the row must be multiplied by the 

same constant. 
 2. Add a given row to any other row in the matrix. Each element in a row is added to the 

corresponding element in the same column of another row. 
 3. Subtract a given row from any other row in the matrix. Each element in a row is 

subtracted from the corresponding element in the same column of another row. 
 4. Any combination of the above. For example, a row may be multiplied by a constant 

before it is subtracted from another row. 
 
Our first row operation will serve to replace the upper left corner value with a one. We multiply 
Row 1 in A (Row 1A) by .5 to obtain the following: 

       







1018

05.21




        
A

BA

2

15.1 
  

 
where Row 1B replaces Row 1A. Now we obtain a zero in the lower left corner by multiplying 
Row 2 in A by 1/8 and subtracting the result from our new Row 1 to obtain Matrix B as follows: 
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Next, we obtain a 1 in the lower right corner of the left side of the matrix by multiplying Row 2B 
by 8/15: 
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We obtain a zero in the upper right corner of the left side matrix by multiplying Row 2 above by 
2 and subtracting from Row 1 in B: 
 



 
49

(C)     
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The left side of augmented Matrix C is the identity matrix; the right side of C is A-1. 
 Because matrices cannot be divided as numbers are in arithmetic, one performs an 
analogous operation by inverting the matrix intended to be the “divisor” and post multiplying 
this inverse by the first matrix to obtain a quotient. Thus, instead of dividing A by B to obtain D, 
one inverts B and obtains D by the product AB-1 = D. This concept is extremely useful for many 
types of algebraic manipulations. 
 
Solving Systems of Equations 
 Matrices can be very useful in arranging systems of equations. Consider for example the 
following system of equations: 

                            05.12.05. 21  xx   

                            08.30.10. 21  xx   
 

This system of equations may be represented as follows: 
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      C          x     =   s 

 
We are not able to divide C by s to obtain x; instead, we invert C to obtain C-1 and multiply it by 
s to obtain x: 
 

C-1s = x 
 
Therefore, to solve for Vector x, we first invert C by augmenting it with the Identity Matrix: 
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Thus, we obtain Vector x with the following product: 
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(D)  
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   C-1              s      =   x      =     x 
 
Thus, we find that x1 = 1.8 and x2 = -1/3. 
 Arbitrage is defined as the simultaneous purchase and sale of assets or portfolios yielding 
identical cash flows. Assets generating identical cash flows (certain or risky cash flows) should 
be worth the same amount. This is known as the Law of One Price. If assets generating identical 
cash flows sell at different prices, opportunities exist to create a profit by buying the cheaper 
asset and selling the more expensive asset. The ability to realize a profit from this type of 
transaction is known as an arbitrage opportunity. Solutions for multiple variables in systems of 
equations are most useful in the application of the Law of One Price and seeking arbitrage 
opportunity. 
 
13.a.  First, note that for any security pair i, j where i = j, i,j = i

2. 
 L = A

2xA
2 + B

2xB
2 + C

2xC
2 +2𝜎஺,஻𝑥஺𝑥஻ +  2𝜎஺,஼𝑥஺𝑥஼ +  2𝜎஻,஼𝑥஻𝑥஼ 

     + 1(rp - r1x1 - r2x2 - r3x3) + 2(1 - x1 - x2 - x3) 
 L = .04xA

2 + .16xB
2 + .64xC

2 +.08𝑥஺𝑥஻ +  0𝑥஺𝑥஼ +  0𝑥஻𝑥஼ 
     + 1(.09 - .05x1 - .15x2 - .25x3) + 2(1 - x1 - x2 - x3) 
   b.  The partial derivative of L with respect to xA is written as follows (Note that 𝜎஺,஺ = 𝜎஺

ଶ: 
𝜕𝐿

𝜕𝑥஺
= 2𝜎஺

ଶ𝑥஺ +  2𝜎஺,஻𝑥஻ +  2𝜎஺,஼𝑥஼ −  𝐸[𝑟௜]λଵ − λଶ = 0 

𝜕𝐿

𝜕𝑥஺
= .08𝑥஺ +  .08𝑥஻ +  0𝑥஼ −  .05λଵ − λଶ = 0 

   c.  Finding partial derivatives of L with respect each of 5 unknowns, setting each partial 
derivative equal to 0 and rearranging leads to the following system: 

⎣
⎢
⎢
⎢
⎡

. 08 . 08 0

. 08 . 32 0
0 0 1.28

−.05 −1
−.15 −1
−.25 −1

−.05 −.15 −.25
−1 −1 −1

0 0
0 0 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑥஺

𝑥஻

𝑥஼

𝜆ଵ

𝜆ଶ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0
0
0

−.09
−1 ⎦

⎥
⎥
⎥
⎤

 

          V*     w*  =      o* 
We invert Matrix V* then solve for Vector w*. We find the following weights: x1 = .717241, x2 
= .165517 and x3 = .117241; our LaGrange multipliers are 1 = .397241 and 2 = .050759. 

   d.    207979.222
5.

,,,
222222  CBCBCACABABACCBBAAm xxxxxxxxx   

   e.  We will solve the following for rf: 
𝐸ൣ𝑟௠ −  𝑟௙൧λଵ =  2σ୫

ଶ  

𝑟௙ =  −
ଶσౣ

మ

λభ
+ 𝐸[𝑟௠] =  −

ଶ×.଴ସଷଶହହ

.ଷଽ଻ଶସଵ
+ .09 = -.12778 

 Note that this is an odd result with a negative interest rate.  
   d.  We calculate the covariance as follows: 
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2𝜎௠,௜ =  𝐸ൣ𝑟௜ −  𝑟௙൧λଵ 

𝜎௠,஺ =  
𝐸ൣ𝑟஺ −  𝑟௙൧λଵ

2
=

𝐸[. 05 + .12778] × .397241

2
= .035311 

   e.  Since βi = 
ఙ೘,೔

σౣ
మ , the beta of security A is .035311/.2079792 = .816336  
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Appendix B: Adjusted Beta and Index Models 
 
 Simple observation of security markets reveals a strong tendency for security returns to 
be affected by common factors, particularly the market portfolio. From a mathematical 
perspective, these factors represent a source of covariance or correlation between returns of pairs 
of securities. The single index model specifies a single source of covariance among security 
returns Ri,t, and denotes security returns as a linear function of this factor or index It: 
 
(1) ittiiit IR     

 
where αi represents that portion of the return of security i which is constant and independent of 
the index It, βi represents the sensitivity of security i to index I and єit represents the portion of 
security i's return which is security specific and unrelated to the index or to returns of other 
securities. The index models are simply regression models that presume that security returns are 
a linear function of one or more (in the case of multi-index models) indices. If index models can 
be used to generate security returns, then the process for obtaining security variances and 
covariances with respect to one another will be much simplified. 
 The Single Index Model has several uses: 
 
  1. To reduce the number of inputs and computations required for portfolio analysis. In 

particular, the Single Index Model will be useful for deriving forecasts for security and 
portfolio expected return, variance and covariance. 

  2. To build and apply equilibrium models such as the Capital Asset Pricing Model and 
Arbitrage Pricing Theory. 

  3. To adjust for risk in event studies and back-testing programs. 
 
 The Single Index Model is based on the following series of assumptions: 
 
  1. As indicated above, security returns are linear in a common index as follows: 

ittiiit IR     

 
  2. The parameters of the index model αi and βi are computed through a linear regression 

procedure such that the risk premium is purely a function of the index, not security 
specific risk. That is, E(ɛit)=0. Furthermore, it will be assumed that security specific risk 
is unrelated to the value of the index; that is, E(єitβIt)=0=Cov(єitβIt). 

  3. The index represents the only source of covariance between asset returns. That is, 
E(єitєjt)=0. 

 
 Based on the Single Index Model, we may reflect the expected return of a security i or 
portfolio p as follows: 
 
(2) ][][ IER iii    

 
(2a) ][][ IER ppp    
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where the parameters for the portfolio are simply a weighted average of the parameters for the 
individual securities. For sake of notational convenience, we use the expectations operator E[*] 
to replace the summation notation Σi=1[*]Pi. That is, for expected security return and variance, we 
have: 
 

(A)    



m

j
iiiii

m

j
ii PIPRR

11

][   

(B)     )(2)(( 2222 IEIIEIE iiii    

 
We can use Equations 1 and 2 and our standard definition for security variance to express 
security variance as a function of the index: 
 

(A)      22

1
2 )()()( iiiiiiii IEIEIEE    

 
We can complete the square of Equation A and write security variance as: 
 
(B)     )(2)(( 2222 IEIIEIE iiii    

 
Because the covariance between the index and firm specific returns is assumed to be zero above 
(E[(єit-0)(I-E[I])] = 0), the cross product terms drop out: 
  
(C)      )0()()(( 222222  iiiii EIEIEIEIE    

 
Due to our definition of variance, and that the expected unsystematic risk premium (error) equals 
zero, Equation C simplifies to: 
 
(3) 2222

iIii    

 
This expression has a particularly useful intuition: security variance is the sum of systematic or 
index induced variance β²iσ²i and firm specific variance σ²єi. Firm specific risk σ²єi will tend 
towards zero in a well-diversified portfolio such that portfolio variance is expressed: 
 
(3a) 222

Ipp     

 
 The Single Index Model can be used to substantially reduce the number of computations 
for covariances required for portfolio risk analysis. We know that n2 covariance calculations are 
required to compute portfolio risk.2 For example, a ninety- security portfolio will require 8100 
covariance calculations. Thus, it is very useful to limit the number of calculations required for 

 
2In sum, n2 covariances need to be computed for the standard portfolio variance model. However, this number of 
covariances can be reduced to (n2-n)/2 non-trivial covariances since n of the covariances will actually be variances 
(the covariance between any security i and itself is variance) and each σi,k will equal σk,i. By this formula, we can 
compute that a ninety-security portfolio would require 4005 covariance calculations. 



 
54

each covariance. Using the expectations operator notation, we can define covariance as follows: 
 
(4)     ))((, Jjiiji RERRERE   

 
Replacing Equations 1 and 2 into Equation 4, we have: 

 
(A)     ))((),(, IEIIEIERRCov jjjjjiiiiijiji    

 
After performing multiplications within the brackets, and noting that єi and єj are uncorrelated 
with the index such that the cross-product terms drop out, Equation A simplifies to: 
 
(B)   jijpji IEIE   ])([ 2

,   

 
We bring the expectations operator inside the brackets to obtain: 
 
(C)   )()( 2

, jijiji EIEIE     

 
Since (єiєj) equals zero by our assumption above that the index captures all sources of covariance 
between pairs of securities, Equation C simplifies to: 
 
(5) 2

, Ijiji    

 
If our covariance calculations were to be based on 60 months of time series returns, we would 
compute a single beta value for each of n securities in a portfolio and a variance for the index 
itself. Thus, we could compute all (n2-n)/2 covariances from n betas and one variance. When n is 
large, the time to complete these computations will be substantially less than the time to compute 
(n2-n)/2 covariances from 60 months of raw returns data. 
 In most cases, the single index model relies on an index representing market returns. The 
most frequently used index for academic studies is the S&P 500, but other indices such as those 
provided by the exchanges, Value Line and Russell may be used as well. 
 Historical betas are most frequently estimated on the basis of covariances and variance 
drawn from sixty months of historical security returns. However, historical returns and their 
volatility are not necessarily the best indicators of future betas. Corporate circumstances change 
over time as do the markets evaluation of those circumstances. Furthermore, any historical beta 
estimate would be subject to sampling and measurement error. Blume [1975] has shown a 
tendency for betas to drift towards 1 over time. He proposed a correction for this tendency to 
drift towards one: 
 
(6) HiFi ,10,    

 
where βi,F is the forecasted beta for a future five year period and βi,H is the historical beta 
estimated using the procedure described above. The coefficients γ0 and γ1 are determined by 
performing a regression of five-year betas against betas estimated over the immediately 
preceding five-year period. For example, the beta estimates βi,F for the period 1955-1961 based 
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on beta estimates for 1948-1954. βi,H were obtained from adjustment coefficients γ 0 = .343 and 
γ1 = .677. Note that the coefficients will normally sum to approximately one. Other adjustment 
procedures exist as well, including that proposed by Vasicek [1973]. 
 Beaver, Kettler and Scholes [1970] and numerous papers authored by Barr Rosenberg, 
including Rosenberg and James [1976], have proposed estimating betas from firm fundamental 
factors including ratios. The advantage to this methodology is that the "fundamental beta" is not 
based on historical returns data but on current financial statement data supplemented with other 
current and relevant information. The fundamental beta forecast βi,F is determined as a function 
of m firm fundamental factors xi: 
 
(7) miiiFi x ,2,1,10, .....    

 
The fundamental factors might include financial ratios such as debt-equity ratios, liquidity ratios 
and return measures. Other factors that might be considered relevant include firm size, tenure of 
C.E.O., volatility of industry, etc. The coefficients are determined on the basis of a regression of 
historical betas on historical values for the various fundamental factors. 
 
Multi-Index Models 
 The Multi-Index Model enables the analyst to attribute multiple sources of covariance 
between security returns. The multi-index model can be used to estimate security returns, 
expected returns, variances and covariances as follows: 
 
(8) timtmititiiit IIIR ,,,2,2,1,1, .....    

 
(9)        mmiiiiii IEIEIERE ,22,1, ...    

 
(10) 22

)(
2
,

2
)2(

2
2,

2
)1(

2
1,

2 ..... imImiIiIii    

 
(11) 22

)(
2
,

2
)2(

2
2,1,1,, ..... imImiIijiji    

Derivations for these measures are identical to those for the Single Index Model after adjusting 
the original statistical measures for the additional indices. 
 One important problem from a practical perspective concerns how to obtain indices for 
the Multiple Index Model. Selection of these indices should be based upon the sources of co-
movement among security returns. Potential indices might include market index returns, interest 
rates, commodity prices, financial ratios, firm size, and volatility of industry. Any economic or 
fundamental factor might qualify as an index if it captures a significant portion of the co-
movement among security prices. 
 
 


