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Preliminaries and Review

1.1 FINANCIAL MODELS

A model can be characterized as an artificial structure describing the relationships among vari-
ables or factors. Practically all of the methodology in this book is geared toward the development
and implementation of financial models to solve financial problems. For example, valuation models
provide a foundation for investment decision-making and models describing stochastic processes
provide an important tool to account for risk in decision-making.

The use of models is important in finance because “real world” conditions that underlie finan-
cial decisions are frequently extraordinarily complicated. Financial decision-makers frequently use
existing models or construct new ones that relate to the types of decisions they wish to make.
Models proposing decisions that ought to be made are called normative models.1

The purpose of models is to simulate or behave like real financial situations. When construct-
ing financial models, analysts exclude the “real world” conditions that seem to have little or no
effect on the outcomes of their decisions, concentrating on those factors that are most relevant to
their situations. In some instances, analysts may have to make unrealistic assumptions in order
to simplify their models and make them easier to analyze. After simple models have been con-
structed with what may be unrealistic assumptions, they can be modified to match more closely
“real world” situations. A good financial model is one that accounts for the major factors that
will affect the financial decision (a good model is complete and accurate), is simple enough
for its use to be practical (inexpensive to construct and easy to understand), and can be used to
predict actual outcomes. A model is not likely to be useful if it is not able to project an outcome
with an acceptable degree of accuracy. Completeness and simplicity may directly conflict with
one another. The financial analyst must determine the appropriate trade-off between complete-
ness and simplicity in the model he wishes to construct.

In finance, mathematical models are usually the easiest to develop, manipulate, and modify.
These models are usually adaptable to computers and electronic spreadsheets. Mathematical models
are obviously most useful for those comfortable with math; the primary purpose of this book is to
provide a foundation for improving the quantitative preparation of the less mathematically oriented
analyst. Other models used in finance include those based on graphs and those involving simula-
tions. However, these models are often based on or closely related to mathematical models.
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The concepts of market efficiency and arbitrage are essential to the development of many financial
models. Market efficiency is the condition in which security prices fully reflect all available
information. Such efficiency is more likely to exist when wealth-maximizing market participants
can instantaneously and costlessly execute transactions as information is revealed. Transactions
costs, irrationality, and poor execution systems reduce efficiency. Arbitrage, in its simplest scenario,
is the simultaneous purchase and sale of the same asset, or more generally, the nearly simultaneous
purchase and sale of assets generating nearly identical cash flow structures. In either case, the arbi-
trageur seeks to produce a profit by purchasing at a price that is less than the selling price. Proceeds
of the sales are used to finance purchases such that the portfolio of transactions is self-financing,
and that over time, no additional capital is devoted to or lost from the portfolio. Thus, the portfolio
is assured a non-negative profit at each time period. The arbitrage process is riskless if purchase
and sale prices are known at the times they are initiated. Arbitrageurs frequently seek to profit from
market inefficiencies. The existence of arbitrage profits is inconsistent with market efficiency.

1.2 FINANCIAL SECURITIES AND INSTRUMENTS

A security is a tradable claim on assets. Real assets contribute to the productive capacity of the
economy; securities are financial assets that represent claims on real assets or other securities.
Most securities are marketable to the general public, meaning that they can be sold or assigned
to other investors in the open marketplace. Some of the more common types of securities and
tradable instruments are briefly introduced in the following:

1. Debt securities: Denote creditorship of an individual, firm or other institution. They typically
involve payments of a fixed series of interest (often known as coupon payments) or amounts
towards principal along with principal repayment (often known as face value). Examples include:
• Bonds: Long-term debt securities issued by corporations, governments, or other institutions.

Bonds are normally of the coupon variety (they make periodic interest payments on the
principal) or pure discount (they are zero coupon instruments that are sold at a discount from
face value, the bond’s final maturity value).

• Treasury securities: Debt securities issued by the Treasury of the United States federal
government. They are often considered to be practically free of default risk.

2. Equity securities (stock): Denote ownership in a business or corporation. They typically permit
for dividend payments if the firm’s debt obligations have been satisfied.

3. Derivative securities: Have payoff functions derived from the values of other securities, rates, or
indices. Some of the more common derivative securities are:
• Options: Securities that grant their owners rights to buy (call) or sell (put) an underlying

asset or security at a specific price (exercise price) on or before its expiration date.
• Forward and futures contracts: Instruments that oblige their participants to either purchase or

sell a given asset or security at a specified price (settlement price) on the future settlement
date of that contract. A long position obligates the investor to purchase the given asset on
the settlement date of the contract and a short position obligates the investor to sell the
given asset on the settlement date of the contract.

• Swaps: Provide for the exchange of cash flows associated with one asset, rate, or index for
the cash flows associated with another asset, rate, or index.
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4. Commodities: Contracts, including futures and options on physical commodities such as oil,
metals, corn, etc. Commodities are traded in spot markets, where the exchange of assets and
money occurs at the time of the transaction or in forward and futures markets.

5. Currencies: Exchange rates denote the number of units of one currency that must be given up
for one unit of a second currency. Exchange transactions can occur in either spot or forward
markets. As with commodities, in the spot market, the exchange of one currency for another
occurs when the agreement is made. In a forward market transaction, the actual exchange of
one currency for another actually occurs at a date later than that of the agreement. Spot and
forward contract participants take one position in each of two currencies:
• Long: An investor has a “long” position in that currency that he will accept at the later date.
• Short: An investor has a “short” position in that currency that he must deliver in the

transaction.
6. Indices: Contracts pegged to measures of market performance such as the Dow Jones

Industrials Average or the S&P 500 Index. These are frequently futures contracts on portfolios
structured to perform exactly as the indices for which they are named. Index traders also
trade options on these futures contracts.

This list of security types is far from comprehensive; it only reflects some of those instruments
that will be emphasized in this book. In addition, most of the instrument types will have many
different variations.

1.3 REVIEW OF MATRICES AND MATRIX ARITHMETIC

A matrix is simply an ordered rectangular array of numbers. A matrix is an entity that
enables one to represent a series of numbers as a single object, thereby providing for
convenient systematic methods for completing large numbers of repetitive computations. Such
objects are essential for the management of large data structures. Rules of matrix arithmetic
and other matrix operations are often similar to rules of ordinary arithmetic and other opera-
tions, but they are not always identical. In this text, matrices will usually be denoted with
bold uppercase letters. When the matrix has only one row or one column, bold lowercase let-
ters will be used for identification. The following are examples of matrices:

A5

4 2 6

3 7 4

8 25 9

2
664

3
775 B5

2 23

3=4 21=2

" #
c5

1

5

7

2
664
3
775 d5 4½ �

The dimensions of a matrix are given by the ordered pair m3 n, where m is the number of
rows and n is the number of columns in the matrix. The matrix is said to be of order m3 n where,
by convention, the number of rows is listed first. Thus, A is 33 3, B is 23 2, c is 33 1, and d is
13 1. Each number in a matrix is referred to as an element. The symbol ai,j denotes the element
in Row i and Column j of Matrix A, bi,j denotes the element in Row i and Column j of Matrix B,
and so on. Thus, a3,2 is 25 and c2,15 5.

There are specific terms denoting various types of matrices. Each of these particular types of
matrices has useful applications and unique properties for working with. For example, a vector is
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a matrix with either only one row or one column. Thus, the dimensions of a vector are 13 n or
m3 1. Matrix c above is a column vector; it is of order 33 1. A 13 n matrix is a row vector with n
elements. The column vector has one column and the row vector has one row. A scalar is a 13 1
matrix with exactly one entry, which means that a scalar is simply a number. Matrix d is a scalar,
which we normally write as simply the number 4. A square matrix has the same number of rows
and columns (m5 n). Matrix A is square and of order 3. The set of elements extending from the
upper leftmost corner to the lower rightmost corner in a square matrix is said to be on
the principal diagonal. For a square matrix A, each of these elements are those of the form ai,j, i5 j.
Principal diagonal elements of Square Matrix A in the example above are a1,15 4, a2,25 7, and
a3,35 9. Matrices B and d are also square matrices.

A symmetric matrix is a square matrix where ci,j equals cj,i for all i and j. This is equivalent
to the condition kth row equals the kth column for every k. Scalar d and matrices H, I, and J
below are all symmetric matrices. A diagonal matrix is a symmetric matrix whose elements off
the principal diagonal are zero, where the principal diagonal contains the series of elements
where i5 j. Scalar d and Matrices H and I below are all diagonal matrices. An identity or unit
matrix is a diagonal matrix consisting of ones along the principal diagonal. Matrix I below is
the 33 3 identity matrix:

H5
13 0 0
0 11 0
0 0 10

2
4

3
5 I5

1 0 0
0 1 0
0 0 1

2
4

3
5 J5

1 7 2
7 5 0
2 0 4

2
4

3
5

1.3.1 Matrix Arithmetic

Matrix arithmetic provides for standard rules of operation just as conventional arithmetic.
Matrices can be added or subtracted if their dimensions are identical. Matrices A and B add to C
if ai,j1 bi,j5 ci,j for all i and j:

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

^ ^ ^ ^

am,1 am,2 . . . am,n

2
66664

3
77775 1

b1,1 b1,2 . . . b1,n

b2,1 b2,2 . . . b2,n

^ ^ ^ ^

bm,1 bm,2 . . . bm,n

2
66664

3
77775 5

c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n

^ ^ ^ ^

cm,1 cm,2 . . . cm,n

2
66664

3
77775

A 1 B 5 C

Note that each of the three matrices is of dimension 33 3 and that each of the elements in
Matrix C is the sum of corresponding elements in Matrices A and B. The process of subtract-
ing matrices is similar, where di,j 2 ei,j5 fi,j for D2E5 F:

d1,1 d1,2 . . . d1,n

d2,1 d2,2 . . . d2,n

^ ^ ^ ^

dm,1 dm,2 . . . dm,n

2
66664

3
77775 2

e1,1 e1,2 . . . e1,n

e2,1 e2,2 . . . e2,n

^ ^ ^ ^

em,1 em,2 . . . em,n

2
66664

3
77775 5

f1,1 f1,2 . . . f1,n

f2,1 f2,2 . . . f2,n

^ ^ ^ ^

fm,1 fm,2 . . . fm,n

2
66664

3
77775

D 2 E 5 F
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Now consider a third matrix operation. The transpose AT of Matrix A is obtained by interchan-
ging the rows and columns of Matrix A. Each ai,j becomes aj,i. The following represent Matrix A
and its transpose AT:

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

^ ^ ^ ^

am,1 am,2 . . . am,n

2
66664

3
77775,

a1,1 a2,1 . . . am,1

a1,2 a2,2 . . . am,2

^ ^ ^ ^

a1,n a2,n . . . am,n

2
66664

3
77775

A AT

Two matrices A and B can be multiplied to obtain the product AB5C if the number of col-
umns in the first Matrix A equals the number of rows B in the second.2 If Matrix A is of dimen-
sion m3 n and Matrix B is of dimension n3 q, the dimensions of the product Matrix C will be
m3 q. Each element ci,k of Matrix C is determined by the following sum:

ci,k 5
Xn
j51

ai,jbj,k

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

^ ^ ^ ^

am,1 am,2 . . . am,n

2
66664

3
77775 3

b1,1 b1,2 . . . b1,q

b2,1 b2,2 . . . b2,q

^ ^ ^ ^

bn,1 bn,2 . . . bn,q

2
66664

3
77775

A 3 B

5

Pn
j51 a1,jbj,1

Pn
j51 a1,jbj,2 . . .

Pn
j51 a1,jbj,qPn

j51 a2,jbj,1
Pn

j51 a2,jbj,2 . . .
Pn

j51 a2,jbj,q

^ ^ ^ ^Pn
j51 am,jbj,1

Pn
j51 am,jbj,m . . .

Pn
j51 am,jbj,q

2
66664

3
77775 5

c1,1 c1,2 . . . c1,q

c2,1 c2,2 . . . c2,q

^ ^ ^ ^

cm,1 cm,2 . . . cm,q

2
66664

3
77775

A3B 5 C

Notice that the number of columns (n) in Matrix A equals the number of rows in Matrix B. Also
note that the number of rows in Matrix C equals the number of rows in Matrix A; the number of col-
umns in C equals the number of columns in Matrix B. One additional detail on matrix multiplication
is that scalar multiplication is the product of a real number cwith a matrix A:

cA 5

ca1,1 ca1,2 . . . ca1,n

ca2,1 ca2,2 . . . ca2,n

^ ^ ^ ^

cam,1 cam,2 . . . cam,n

2
66664

3
77775
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Matrix Arithmetic Illustration:

Consider the following matrices A and B below:

A5
3 0
22 21

� �
, B5

5 2
26 4

� �

We findAT, 4A,A1B,AB, and BA as follows:

AT 5
3 22

0 21

" #
, 4A5

4ð3Þ 4ð0Þ
4ð2 2Þ 4ð2 1Þ

" #
5

12 0

28 24

" #

A1B5
3 1 5 0 1 2

22 2 6 21 1 4

2
4

3
55 8 2

28 3

" #

AB5
3ð5Þ 1 0ð26Þ 3ð2Þ 1 0ð4Þ

ð22Þð5Þ 1 ð21Þð26Þ 22ð2Þ 1 ð21Þð4Þ

2
4

3
55

15 6

24 28

2
4

3
5

BA5
5ð3Þ 1 2ð22Þ 5ð0Þ 1 2ð21Þ

ð26Þð3Þ 1 4ð22Þ 26ð0Þ 1 4ð21Þ

2
4

3
55

11 22

226 24

2
4

3
5

1.3.1.1 Matrix Arithmetic Properties

It is useful to note that matrices have certain algebraic properties that are similar to the alge-
braic properties of real numbers. Here are a few of their properties:

1. A1B5B1A (commutative property of addition)
2. A(B1C)5AB1AC (distributive property)
3. AI5 IA5A where I is the identity matrix
4. (AB)T5BTAT

However, it is important to observe that, unlike real numbers, the commutative property of
multiplication does not hold for matrices; that is, in general, AB 6¼ BA.

1.3.1.2 The Inverse Matrix

An inverse Matrix A21 exists for the square Matrix A if the products AA21 or A21A equal the
identity Matrix I:

AA21 5 I

A21A5 I

One means for finding the inverse Matrix A21 for Matrix A is through the use of a process
called the Gauss�Jordan method.
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ILLUSTRATION: THE GAUSS�JORDAN METHOD

An inverse Matrix A21 exists for the square Matrix A if the product A21A or AA21 equals the
identity Matrix I. Consider the following product:

A.

2 4

8 1

" # 21

30

2

15

4

15

21

15

2
66664

3
77775 5

1 0

0 1

" #

A A21 5 I

To construct A21 given a square matrix A, we will use the Gauss�Jordan method.
We illustrate the method with the example above. First, augment A with the 23 2 identity
matrix as follows:

B.
2 4 ^ 1 0

8 1 ^ 0 1

" #

For the sake of convenience, call the above augmented Matrix B. Now, a series of elementary
row operations (involves addition, subtraction, and multiplication of rows, as described below)
will be performed such that the identity matrix replaces the original Matrix A (on the left side).
The right-side elements will comprise the inverse Matrix A21. Thus, in our final augmented
matrix, we will have ones along the principal diagonal on the left side and zeros elsewhere; the
right side of the matrix will comprise the inverse of A. Allowable elementary row operations
include the following:

1. Multiply a given row by any constant. Each element in the row must be multiplied by the
same constant.

2. Add a given row to any other row in the matrix. Each element in a row is added to the
corresponding element in the same column of another row.

3. Subtract a given row from any other row in the matrix. Each element in a row is subtracted
from the corresponding element in the same column of another row.

4. Any combination of the above. For example, a row may be multiplied by a constant before it
is subtracted from another row.

Our first row operation will serve to replace the upper left corner value with a one. We multi-
ply Row 1 in B by .5:

B5
2 4 ^ 1 0

8 1 ^ 0 1

" #
ðrow1Þ 3 :5

�!
1 2 ^ :5 0

8 1 ^ 0 1

" #
5C
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Now we obtain a zero in the lower left corner by multiplying Row 2 in C by 1/8 and subtracting
the result from Row 1 of C as follows:

C5
1 2 ^ :5 0

8 1 ^ 0 1

" #
row12 1=8ðrow2Þ

�!
1 2 ^ :5 0

0
15

8
^ :5

21

8

2
4

3
55D

Next, we obtain a 1 in the lower right corner of the left side of the matrix by multiplying Row
2 of matrix D by 8/15:

D5

1 2 ^ :5 0

0
15

8
^ :5

21

8

2
64

3
75 ðrow2Þ 3 8

15

�!

1 2 ^ :5 0

0 1 ^
4

15

21

15

2
64

3
75 5E

We obtain a zero in the upper right corner of the left-side matrix by multiplying Row 2 of
matrix E above by 2 and subtracting from Row 1 in E:

E5

1 2 ^ :5 0

0 1 ^
4

15

21

15

2
4

3
5 row12 ðrow2Þ3 2

�!

1 0 ^
21

30

2

15

0 1 ^
4

15

21

15

2
6664

3
7775 5 F

The left side of augmented Matrix F is the identity matrix; the right side of F is A21.

ILLUSTRATION: SOLVING SYSTEMS OF EQUATIONS

Matrices can be very useful in arranging systems of equations. Consider, for example, the fol-
lowing system of equations:

:05x1 1 :12x2 5 :05

:10x1 1 :30x2 5 :08

This system of equations can be represented as follows:

:05 :12

:10 :30

" #
x1

x2

" #
5

:05

:08

" #

C 3 x 5 s

Thus, we can express this system of equations as the matrix equation Cx5 s, where in general
C is a given n3 n matrix, s is a given n3 1 column vector, and x is the unknown n3 1 column
vector for which we wish to solve. In ordinary algebra, if we had the real-valued equation Cx5 s,
we would solve for s by dividing both sides of the equation by C, which is equivalent to multi-
plying both sides of the equation by the inverse of C. Here we show the algebra, so that we see
that this process with real numbers is essentially equivalent for the process with matrices:

Cx5 s, C21Cx5C21s, 1ðxÞ5C21s, x5C21s
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With matrices, the process is:

Cx5 s, C21Cx5C21s, Ix5C21s, x5C21s

Of course, in ordinary algebra, it is trivial to find the inverse of a number C, which is simply
its reciprocal 1/C. To find the inverse of a matrix C, we use the Gauss�Jordan method
described above. We begin by augmenting the matrix C by placing its corresponding identity
matrix I immediately to its right:

A.
:05 :12 ^ 1 0

:10 :30 ^ 0 1

" #

We will reduce this matrix using the allowable elementary row operations described earlier to
the form with the identity matrix I on the left replacing C, and to the right will be the inverse of C:

B.
1 2:4 ^ 20 0

0 :6 ^ 220 10

" #
Row B15A1 � 20
Row B25 ð10 �A2Þ2B1

C.

1 0

0 1

^

^

100 240

2100

3

50

3

2
64

3
75 Row C15B12 ð2:4 �C2Þ

Row C25B2 � 5=3
I C21

Thus, we obtain Vector x with the following product:

D.

x1

x2

" #
5

100 240

2100

3

50

3

2
64

3
75 :05

:08

" #
5

1:8

21

3

2
64

3
75

x 5 C21 3 s

Thus, we find that x15 1.8 and x25 21/3.

1.3.2 Vector Spaces, Spanning, and Linear Dependence

ℝn is defined as the set of all vectors (may be represented as a column or row vectors) with n
real-valued entries or coordinates. The row vector xT 5 ðx1,x2, . . . ,xnÞ or column vector
x5 ðx1,x2, . . . ,xnÞT can be regarded as a point in the n-dimensional space ℝn and xi is the ith coor-
dinate of the point (vector) x.

The set ℝn with the operations of vector addition and scalar multiplication (discussed earlier)
makes ℝn an n-dimensional vector space. A linear combination of vectors is accomplished through
either or both of the following:

• Multiplication of any vector by a scalar (real number)
• Addition of any combination of vectors either before or after multiplication by scalars
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1.3.2.1 Linear Dependence and Linear Independence

If a vector in ℝn can be expressed as a linear combination of a set of other vectors in ℝn, then that
set of vectors including the first is said to be linearly dependent. Suppose we are given a set of m vec-
tors: {x1,x2,. . .,xm} with each vector xi in ℝn. An equivalent definition of linear dependence of the set
of vectors {x1,x2,. . .,xm} is that there exists m scalars: α1,α2, . . . ,αm so that:

α1x1 1α2x2 1α3x3 1?1αmxm 5 0

where at least one of the scalars αi is non-zero and 05 (0,0,. . .,0) or 05 (0,0,. . .,0)T depending upon
whether the vectors xi are expressed as row or column vectors. We note that 0 is called the zero vector.
The set of vectors {x1,x2,. . .,xm} is said to be linearly independent when the only set of scalars
{α1,α2, . . . ,αm} that satisfy the equation above is when αi 5 0 for all i5 1,2, . . . ,m. When the set of vec-
tors {x1,x2,. . .,xm} is linearly independent, then no vector in this set can be expressed as a linear combi-
nation of the other vectors in the set. If we denote the n3m matrix X5 [x1,x2,. . .,xm] and the m3 1
column vector of scalars α5 α1,α2, . . . ,αmð ÞT, then we can express the above equation as the matrix
equation Xα5 0, where 05 (0,0,. . .,0)T is the n3 1 column zero vector.

ILLUSTRATIONS: LINEAR DEPENDENCE AND INDEPENDENCE

Consider the following set {x1, x2, x3} of three vectors in ℝ3:

3
1
9

2
4
3
5 5

5
15

2
4

3
5 1

2
3

2
4
3
5 α1x1 1α2x2 1α3x3 5 ½0�

x1 x2 x3

We will determine whether this set is linearly independent. Let vector α be [α1, α2, α3]
T

and Matrix X be [x1, x2, x3]. We determine that vector set {x1, x2, x3} is linearly dependent by
demonstrating that there exists a vector α that produces Xα5 [0]. By inspection, we find that
α5 [1, 21, 2]T is one such vector. Thus, the set {x1, x2, x3} is linearly dependent. Also note that
any one of these three vectors is a linear combination of the other two.

Vector set {y1, y2, y3} below is linearly independent because the only vector satisfying
αTY5 [0] is α5 [0, 0, 0]T:3

3
1
9

2
4
3
5 5

5
15

2
4

3
5 1

2
4

2
4
3
5 α1y1 1α2y2 1α3y3 5 ½0�

y1 y2 y3

Furthermore, no vector in set {y1, y2, y3} can be defined as a linear combination of the other
vectors in set {Y}. Thus, this set is linearly independent. This means that it is impossible to
express any one of the vectors as a linear combination of the other two vectors.

1.3.2.2 Spanning the Vector Space and the Basis

A set of m vectors {x1,x2,. . .,xm}, where each vector xi is an n-dimensional vector in ℝn, is said
to span the n-dimensional vector space ℝn if any vector in ℝn can be expressed as a linear combi-
nation of the vectors x1,x2,. . .,xm. In other words, for every vector v in ℝn, there exist scalars
α1,α2, . . . ,αm such that v5α1x11α2x21 . . .1αmxm.
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If a set of vectors {x1,x2,. . .,xm} is both linearly independent and spans the n-
dimensional space ℝn, then that set of vectors is called a basis for the vector space ℝn.
However, any basis for ℝn must consist of exactly n vectors. This is because for a set of vectors
{x1,x2,. . .,xm} in ℝn, if m , n, then there are not enough vectors to span ℝn. On the other hand,
if m . n, then it is possible for the set of vectors to span ℝn, but there will be too many such
vectors for the set to be linearly independent. Thus, any set of m5 n linearly independent
vectors in ℝn will form a basis for ℝn since any such set will also always span ℝn.

ILLUSTRATION: SPANNING THE VECTOR SPACE AND THE BASIS

We return to our illustration above with our linearly independent vector set {y1, y2, y3}:

3
1
9

2
4
3
5 5

5
15

2
4

3
5 1

2
4

2
4
3
5

y1 y2 y3

Since this set is linearly independent, it will form a basis for ℝ3 if it also spans the three-
dimensional space. We will demonstrate that any vector v in ℝ3 is a linear combination of y1, y2,
and y3, thereby demonstrating that vectors y1, y2, and y3 span ℝ3:

v 5α1

3
1
9

2
4
3
51α2

5
5
15

2
4

3
51α3

1
2
4

2
4
3
5

To obtain numerical values for α1, α2, and α3, we combine vectors y1, y2, and y3 into a 33 3
matrix, then invert and multiply by v as follows:4

3 5 1
1 5 2
9 15 4

2
4

3
5 α1

α2

α3

2
4

3
5 5

v1
v2
v3

2
4

3
5

Y α 5 v

α1

α2

α3

2
4

3
5 5

21 2:5 :5
1:4 :3 2:5
23 0 1

2
4

3
5 v1

v2
v3

2
4

3
5

α 5 Y21 3 v

Thus, we can replicate any vector v with a linear combination of vectors y1, y2, and y3 and some
vector α. For example, if v5 [6 3 1]T, then we obtain α as follows:

α1

α2

α3

2
4

3
5 5

21 2:5 :5
1:4 :3 2:5
23 0 1

2
4

3
5 6

3
1

2
4
3
5 5

27
8:8
217

2
4

3
5

α 5 Y21 3 v

v5 27
3
1
9

2
4
3
51 8:8

5
5
15

2
4

3
5 2 17

1
2
4

2
4
3
5
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As long as we can invert 33 3 matrix Y, we can replicate any vector in ℝ3 with some
linear combination of vectors y1, y2, and y3 from which coefficients are obtained from
vector α.

In a sense, when an n1 1st vector is linearly dependent on a set of n other n3 1 vectors, the
characteristics or information in the n other n3 1 vectors can be used to replicate the information
in the n1 1st vector. In a financial sense where elements in a vector represent security payoffs
over time or across potential outcomes, the payoff structure of the n1 1st security can be repli-
cated with a portfolio comprising the n other n3 1 security vectors. When a set of n payoff
vectors spans the n-dimensional outcome or time space, the payoff structure for any other secu-
rity or portfolio in the same outcome or time space can be replicated with the payoff vectors of
the n-security basis. Securities or portfolios whose payoff vectors can be replicated by portfolios
of other securities must sell for the same price as those portfolios; otherwise, the law of one price is
violated.5

1.4 REVIEW OF DIFFERENTIAL CALCULUS

The derivative and the integral are the two most essential concepts from calculus. The deriva-
tive from calculus can be used to determine rates of change or slopes. They are also useful for find-
ing function maxima and minima. For those functions whose slopes are changing, the derivative is
equal to the instantaneous rate of change; that is, the change in y induced by the “tiniest” change
in x. Assume that y is given as a function of variable x. If x were to increase by a small (infinitesi-
mal—that is, approaching, though not quite equal to zero) amount Δx, by how much would y
change? This rate of change is given by the derivative of y with respect to x, which is defined as
follows:

dy

dx
5 f 0ðxÞ5 lim

Δx-0

fðx1ΔxÞ2 fðxÞ
Δx

(1.1)

Consider Figure 1.1, which plots the function y5 2x2 x2. Using Eq. (1.1), we will find that
dy/dx, the slope of our function is calculated by:

dy

dx
5 f 0ðxÞ5 lim

Δx-0

fðx1ΔxÞ2 fðxÞ
Δx

5 lim
Δx-0

2ðx1ΔxÞ2 ðx1ΔxÞ22 2x1 x2

Δx

5 lim
Δx-0

2x1 2Δx2 x22 ðΔxÞ22 2xΔx2 2x1 x2

Δx
5 lim

Δx-0

2Δx2 ðΔxÞ22 2xΔx

Δx
5 lim

Δx-0
ð22Δx2 2xÞ

5 22 2x

On Figure 1.1, suppose that we start from point (x0, y0)5 (0.2, 0.36). If the change in x were
Δx5 .8, the change in y would be Δy5 (12 .36)5 .64 and the average rate of change would be
Δy/Δx5 .64/.85 .8. If the change in x were only Δx5 .5, the change in y would be Δy5 0.55,
and the average rate of change would be Δy/Δx5 .55/.55 1.1. As the change in x approaches 0
(i.e., Δx-0), the rate of change Δy/Δx approaches dy/dx5 1.6. Thus, when xi5 .2, dy/dx5 1.6,
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and an infinitesimal change in x would lead to 1.6 times that rate of change in y. The “point
slope” or instantaneous rate of change of 2x2 x2 is 1.6 when xi5 .2. The derivative of y with
respect to x(dy/dx5 f 0(x)) can be interpreted to be the instantaneous rate of change in y given an
infinitesimal change in x. In addition, notice that the slope (derivative) in Figure 1.1 changes with
x. For example, when xi5 .7, dy/dx5 .6. The rate of change of this derivative is the derivative of

the derivative function, or the second derivative of the function f(x) is d2y
dx2 5 fvðxÞ. In our example,

fv(x)5�2. This means that the slope of the tangent line itself is changing at a constant rate of 22.
Thus, after each change in x by 1 unit, the value of the slope will decrease by 2 units. This is
apparent in Figure 1.1, since as x increases, the slope of the curve decreases.

1.4.1 Essential Rules for Calculating Derivatives

Equation (1.1) provides for a change in y given a very small (infinitesimal) change in x. This def-
inition can be used to derive a number of very useful rules in calculus. A few are discussed below.

1.4.1.1 The Power Rule

One type of function that appears regularly in finance is the polynomial or integer power
function. This type of function defines variable y in terms of a coefficient c, variable x, and an
exponent n. While the exponents in a polynomial equation are non-negative integers, the rules
that we discuss here still apply when the exponents assume negative or non-integer values.
Consider a polynomial with a single variable x, a coefficient c, and an exponent n:

y5 cxn

The derivative of such a function y with respect to x is given by:

dy

dx
5 cnxn21 (1.2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
y = 2x – x2

y

x

FIGURE 1.1 The derivative of y5 2x2 x2. When xi5 .2, dy/dx5 1.6. As Δx-0, Δy/Δx-dy/dx. Also, notice that
when xi5 .7, dy/dx5 .6.
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1.4.1.2 The Sum Rule

Consider a function that defines variable y in terms of a series of terms or functions involving x:

d

dx
fðxÞ 1 gðxÞ� �

5
d

dx
½ f xð Þ�1 d

dx
½g xð Þ� (1.3)

The notation d
dx ½f xð Þ� refers to the derivative of the function f(x). In addition, the sum rule

applies to any finite sum of terms. For example, consider y as a function of a series of coeffi-
cients cj, variable x, and a series of exponents nj:

y5
Xm
j51

cj � xnj (1.4)

The derivative of such a function y with respect to x is given by:

dy

dx
5
Xm
j51

cj �nj � xnj21 (1.5)

That is, simply take the derivative of each term in y with respect to x and sum these
derivatives.

1.4.1.3 The Chain Rule

Each of the functions discussed in the previous section is written in polynomial form. Other
rules can be derived to find derivatives for different types of functions. The chain rule is a deriva-
tive rule that allows us to differentiate more complex functions of the form:

y5 fðg xð ÞÞ
where f(x) and g(x) are functions whose derivatives are already known. The chain rule states that:

dy

dx
5 f 0ðg xð ÞÞg0 xð Þ (1.6)

To appreciate when the chain rule is relevant, consider the following two examples. First, con-
sider y5 x1=2. We obtain the derivative as follows:

dy

dx
5

1

2
x21=2

Next, consider the more complicated function y5 ðx3 1 4x2 1Þ1=2. We need to use the chain
rule to find the derivative of y with respect to x. Observe that if we choose f xð Þ5 x1=2 and
g xð Þ5 x3 1 4x2 1, then:

y5 fðg xð ÞÞ5 ðg xð ÞÞ1=2 5 ðx314x21Þ1=2

We already know how to find the derivatives: f 0 xð Þ5 1
2 x

21
2 and g0 xð Þ5 3x2 1 4. Application of

the chain rule to the composite function yields:

dy

dx
5 f 0ðg xð ÞÞg0 xð Þ5 1

2
x3 1 4x2 1
� �21

2 3x2 1 4
� �
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Another way to express the chain rule is to create an intermediate variable, say u, with
u5 g xð Þ. If y5 fðg xð ÞÞ, then y5 f uð Þ. With this notation, the chain rule can be expressed as:

dy

dx
5

dy

du

du

dx

Consider again the example y5 ðx3 1 4x2 1Þ1=2. Choose u5 x3 1 4x2 1, so that y5 u1=2. By using
the chain rule, we obtain:

dy

dx
5

dy

du

du

dx
5

1

2
u21=2 3x2 1 4

� �
5

1

2
ðx3 1 4x2 1Þ21=2 3x2 1 4

� �
Consider one more example where y5 x3 and x5 t21 1 and we wish to find dy/dt. Again,

from the chain rule, we have:

dy

dt
5

dy

dx

dx

dt
5 3x2 2tð Þ5 3 t211

� �2
2tð Þ5 6t t2 1 1

� �2

1.4.1.4 Product and Quotient Rules

The product rule, which is applied to a function such as y5 f(x)g(x), holds that the derivative of
y with respect to x is as follows:

dy

dx
5 f xð Þdg xð Þ

dx
1 gðxÞdfðxÞ

dx
(1.7)

For example, if y5 (4x1 2)(5x1 1) where f(x) is (4x1 2) and g(x) is (5x1 1), the product rule
holds that dy/dx5 (4x1 2)3 51 (5x1 1)3 45 40x1 14.

The quotient rule, which is applied to a function such as f(x)/g(x), holds that the derivative of y
with respect to x is as follows:

dy

dx
5 g xð Þdf xð Þ

dx
2 f xð Þdg xð Þ

dx

� �
=gðxÞ2 (1.8)

For example, if y5 (4x1 2)/5x where f(x) is (4x1 2) and g(x) is 5x, the quotient rule holds that
dy/dx5 [(5x3 4)2 5(4x1 2)]/25x25�2/5x2.

The product rule also implies the constant multiple rule:

d

dx
cfðxÞ� �

5 c
d

dx
fðxÞ� � ðconstant multiple ruleÞ (1.9)

1.4.1.5 Exponential and Log Function Rules

Logarithmic and exponential functions and derivatives of these functions are particularly
useful in finance for modeling growth. Consider the function y5 ex and its derivative with
respect to x:

dy

dx
5 ex (1.10)

Or, more generally, which can be verified with the chain rule:

degðxÞ

dx
5

dgðxÞ
dx

egðxÞ (1.11)
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If y5 eln(x), then, by definition, y5 eln(x)5 x, which implies that deln(x)/dx5 1. Now, consider
the following special case of Eq. (1.11):

delnðxÞ

dx
5

d lnðxÞ
dx

elnðxÞ

which implies:

15
d lnðxÞ
dx

� x
d lnðxÞ
dx

5
1

x

(1.12)

Table 1.1 summarizes the rules for finding derivatives covered in Section 1.4.1. We will make
regular use of these rules throughout the text.

1.4.2 The Differential

The concept of the differential will be very useful later when we discuss stochastic calculus. The
differential of a function can be used to estimate the change of the value of a function y5 f(x)
resulting from a small change of the x value. Since:

f 0 xð Þ5 lim
Δx-0

f x1Δxð Þ2 fðxÞ
Δx

then when Δx is small we have:

f 0 xð ÞD f x1Δxð Þ2 f xð Þ
Δx

The approximation improves as Δx approaches 0. Denote the error in the approximation
above by E(x, Δx), so that:

f x1Δxð Þ2 f xð Þ
Δx

5 f 0ðxÞ1 E x,Δxð Þ

TABLE 1.1 Sample Derivative Rules (c and n are Arbitrary Constrants)

1.
d

dx
xn½ �5 nxn21 ðpower ruleÞ

2.
d

dx
fðxÞ1 gðxÞ� �

5
d

dx
fðxÞ� �

1
d

dx
gðxÞ� � ðsum ruleÞ

3.
dy

dx
5

dy

du

du

dx
ðchain ruleÞ

4.
d

dx
fðxÞgðxÞ� �

5 fðxÞ d

dx
gðxÞ� �

1 gðxÞ d
dx

fðxÞ� � ðproduct ruleÞ

5.
d

dx

fðxÞ
gðxÞ

� �
5

gðxÞ d

dx
fðxÞ� �

2 fðxÞ d
dx

gðxÞ� �
½gðxÞ�2 ðquotient ruleÞ

6.
d

dx
cfðxÞ5 c

d

dx
fðxÞ� � ðconstant multiple ruleÞ

�

7.
d

dx
ex½ �5 ex ðexponential ruleÞ

8.
d

dx
ln x½ �5 1

x
ðlog ruleÞ
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Whenever the derivative f 0 xð Þ exists, this equality and our definition above for f 0(x) imply that
E(x,Δx)- 0 as Δx-0. Now, we label the change in y by Δy, so that:

Δy5 f x1Δxð Þ2 f xð Þ5 f 0 xð ÞΔx1 E x,Δxð ÞΔx

Observe on Figure 1.2 that Δy, the change in y on the curve, can be closely approximated by
f 0 xð ÞΔx when Δx is small. The expression f 0 xð ÞΔx is the change in y on the tangent line resulting
from the change Δx in the value of x. In the case that E(x,Δx)-0 as Δx-0 (so that the error term is
negligible asΔx approaches 0), then one often writes:

dy5 f 0 xð Þdx
where dx has replaced Δx and dy has replaced Δy. The term dy is called the differential of y.

ILLUSTRATION: THE DIFFERENTIAL AND THE ERROR

Reconsider our illustration from earlier with y5 2x2 x2, plotted again in Figure 1.2. The differ-
ential dy5 (22 2x)dx. Suppose that in this case x5 .6 and dx5 0.1, such that dy5 (22 23 .6)
(.1)5 .08. This tells us that the approximate change in y from x5 .6 by Δx5 .1 to x5 .7 will be
Δy � .08. The actual change in y can be computed directly since:

f :7ð Þ2 f :6ð Þ5 1:42 :72
� �

2 1:22 :62
� �

5 :07

The term E(x,Δx)Δx itself is the error in using the differential as an approximation to the
change in y. More precisely:

E x,Δxð ÞΔx5 f x1Δxð Þ2 f xð Þ� �
2 f 0 xð ÞΔx

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71

y = 2x – x2

y

.

.

x

FIGURE 1.2 The differential. When x05 .6, dy/dx5 .8. As Δx-0, Δy/Δx-dy/dx. Also, where the tangent dashed
line reflects error estimates for y based on error estimates for x and dy, notice that when x5 .7, EΔx5 .01.
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where Δx is regarded as the same as dx. In our example we have:

E :6,:1ð ÞΔx5 f :7ð Þ2 f :6ð Þ� �
2 f 0 :6ð Þ3 :15 :912 :84½ �2 :085 :072 :0852:01

Observe that the possible error E(.6,.1)Δx5�.01 is very small relative to the differential
dy5 .08. Observe that the differential provided a reasonable estimate, and the error term
E(.6, .1)Δx, because of its size relative to Δx, can be ignored as Δx approaches 0.

1.4.3 Partial Derivatives

If our dependent variable y is a function of multiple independent variables xj, we can find par-
tial derivatives @y=@xj of y with respect to each of our independent variables xj. For example, in
the following, y is a function of x1 and x2; function y’s partial derivatives with respect to each of
its independent variables (while holding the other constant) follow:

y5 x1e
:05x2 1 :03x2

@y

@x1
5 e:05x2

@y

@x2
5 :05x1e

:05x2 1 :03

1.4.3.1 The Chain Rule for Two Independent Variables

Suppose that y5 f(x) and x5 g(t). Recall that the chain rule provides:

dy

dt
5

dy

dx

dx

dt

There is an analogous chain rule for functions of more than one independent variable.
Suppose the variable z is a function of the variables x and y, z5 f(x, y), and, in turn, each of the
variables x and y is a function of the variable t, x5 g(t) and y5 h(t). This implies that z can be
defined as function of the variable t, that is z5 f(g(t), h(t)).

Now, consider an example where z5 x2y1 y3, x5 t4, and y5 2t. This implies that z5
(t4)2(2t)1 (2t)35 2t91 8t3. While the derivative dz

dt 5 18t8 1 24t2 can easily be obtained by a direct
calculation from this last expression, it can also be found using the chain rule. Since z5 f(x, y),
x5 g(t), and y5 h(t), the derivative dz

dt is obtained from the chain rule:

dz

dt
5

@z

@x

dx

dt
1

@z

@y

dy

dt
5 2xy 4t3

� �
1 ðx2 1 3y2Þð2Þ

5 2t4 2tð Þ 4t3
� �

1 t4
� �2

1 3 2tð Þ2
h i

2ð Þ5 18t8 1 24t2

Observe that we obtained the same answer earlier by the direct calculation.
From the chain rule, we multiply through by dt to derive the total differential:

dz5
@z

@x
dx1

@z

@y
dy
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We will demonstrate in later chapters that the total differential is a useful tool to find solutions
to certain types of differential equations. It is also useful for approximating the change in the vari-
able z (dz) resulting from small changes in the variables x and y (dx and dy).

1.4.4 Taylor Polynomials and Expansions

One can improve on the approximation Δy5 f 0 xð ÞΔx by taking into account higher-order deri-
vatives. As long as the function f(x) is differentiable at least n times, the nth-order Taylor polyno-
mial expanded about x0 is defined by the right side of the following approximation:

fðx0 1ΔxÞ � fðx0Þ1 f 0ðx0ÞðΔxÞ1 1

2!
fvðx0ÞðΔxÞ2 1 1

3!
f ð3Þðx0ÞðΔxÞ3

1?1
1

n!
f ðnÞðx0ÞðΔxÞn

The Taylor polynomial approximation or expansion can be used for finite changes in x.
Taylor polynomial expansions are frequently used to evaluate a function f(x) at some
point x1 that differs from an initial point x0 at which f(x0) has already been evaluated. That
is, the Taylor polynomial can be used to approximate a change in f(x) induced by a change
in x. For example, consider the function fðxÞ5 ln x. Choose x05 1. We will use the third-order
Taylor polynomial to estimate the value of ln 1:2ð Þ. Differentiating, we obtain f 0 xð Þ5 x21,
fv xð Þ52x22, and f 3ð Þ xð Þ5 2x23.6 Evaluating at x05 1 yields f 1ð Þ5 0, f 0 1ð Þ5 1, fv 1ð Þ521, and
f 3ð Þ 1ð Þ5 2. In this case, x15 1.2, such that Δx5 1:22 15 :2. We obtain our estimate for
f x0 1Δxð Þ as follows:

fðx0 1ΔxÞ5 lnð11 :2Þ5 lnð1:2Þ � 01 1ð:2Þ1 1

2
ð21Þð:2Þ2 1 1

6
ð2Þð:2Þ3 5 :182667

The actual value of lnð1:2Þ is .18232. . .. Observe that the first-order Taylor polynomial would yield
the estimate .2, and the second-order would give .18. In general, the higher the order of the Taylor
polynomial, the better the estimate. We are often concerned with changes in the value of the function
f(x). Since Δy5 f(x1Δx)2 f(x), then after replacing x0 with x and subtracting f(x), we can express the
previous approximation as:

Δy5 f 0 xð Þ Δxð Þ1 1

2!
fv xð Þ Δxð Þ2 1 1

3!
f 3ð ÞðxÞ Δxð Þ3 1?1

1

n!
f nð ÞðxÞ Δxð Þn

One can generalize the results above to functions of more than one independent variable.
Consider the function y5 f(x,t). Define Δy5 f(x1Δx,t1Δt))2 f(x,t). This can also be expanded
into a two-variable Taylor series where the first few terms out to the second-order derivatives in
the expansion take the following form:

Δy5
@f

@x
ðx,tÞΔx1

@f

@t
ðx,tÞΔt1

1

2

@2f

@x2
ðx,tÞ Δxð Þ2 1 1

2

@2f

@t2
x,tð Þ Δtð Þ2 1 @2f

@x@t
ðx,tÞΔxΔt1?
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For example, consider the function f x,tð Þ5 100e2x213t. In this illustration, we will use a
second-order Taylor polynomial to estimate the change f(.2,.1)2 f(0,0). So, we must choose
x5 0, t5 0, Δx5 .2 and Δt5 .1. We find first and second derivatives as follows:

@f

@x
52200xe2x213t,

@f

@t
5 300e2x213t

@2f

@x2
5 200ð211 2x2Þe2x213t,

@2f

@x@t
52600xe2x213t,

@2f

@t2
5 900e2x213t

Evaluating the derivatives at (x,t)5 (0,0):

@f

@x
ð0,0Þ5 0,

@f

@t
ð0,0Þ5 300,

@2f

@x2
ð0,0Þ52200,

@2f

@x@t
ð0,0Þ5 0,

@2f

@t2
ð0,0Þ5 900

Thus,

Δf 5 f :2,:1ð Þ2 f 0,0ð ÞD 0 :2ð Þ1 300 :1ð Þ1 1

2
2200ð Þ :2ð Þ2 1 1

2
900ð Þ :1ð Þ2 1 0ð Þ :2ð Þ :1ð Þ

5 30:5

1.4.5 Optimization and the Method of Lagrange Multipliers

Differential calculus is particularly useful for determining minima or maxima of functions of
many types. In many instances, minima or maxima can be calculated by setting first derivatives
with respect to the variable(s) of interest equal to zero (first-order conditions), and then checking
second-order conditions (positive second derivative(s) for minima, negative second derivative(s)
for maxima).

However, many optimization problems require constraints or limitations on variables. The method
of Lagrange multipliers can often enable function optimization in the presence of such constraints.
The method of Lagrange multipliers creates a Lagrange function L that supplements the original
function y5 f(x) to be optimized with an additional expression for each of m relevant constraints.
Assume a linear constraint equation of the form g(x)5 c, with g an m3 1 vector valued function of
the vector x5 ½x1,x2, . . . ,xn�T, which is an n3 1 column vector variable, and c is an m3 1 constant
column vector. We will introduce the Lagrange multiplier column vector λ where
λ5 ðλ1,λ2, . . . ,λmÞT. The Lagrange function has the form:

L5 f xð Þ1λTðg xð Þ 2 cÞ

ILLUSTRATION: LAGRANGE OPTIMIZATION

Suppose that our objective is to minimize the function y5 x12 1 2x22 1 :5x1x2 subject to the con-
straint that x11 .2x25 10:7

OBJ : Min y5 x21 1 2x22 1 :5x1x2

s:t: : x1 1 :2x2 5 10
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The Lagrange function combines the original function and a revised version of the single con-
straint as follows:8

L5 x21 1 2x22 1 :5x1x2 1λðx1 1 :2x2 2 10Þ
We solve our problem by setting partial derivatives of L with respect to each of our three vari-

ables equal to zero. This will result in the following first-order conditions:

@L

@x1
5 2x1 1 :5x2 1λ5 0

@L

@x2
5 :5x1 1 4x2 1 :2λ5 0

@L

@λ
5 x1 1 :2x2 2 105 0

This system is structured and solved in matrix format as follows:

2 :5 1

:5 4 :2

1 :2 0

2
664

3
775

x1

x2

λ

2
664

3
7755

0

0

10

2
664

3
775

x1

x2

λ

2
664

3
7755

:010309 2:05155 1:005155

2:05155 :257732 2:02577

1:005155 2:02577 21:99742

2
664

3
7753

0

0

10

2
664

3
7755

10:05155

2:25773

219:9742

2
664

3
775

Thus, y is minimized when x15 10.05155 and x25�.25773. The Lagrange multiplier λ can be
interpreted as a sensitivity coefficient that indicates the change in y that would result from a
change in the constraint on x11 .2x2. If, for example, we were to increase the constraint by 1 from
10 to 11, the value of y would decrease by approximately 19.9742.

1.5 REVIEW OF INTEGRAL CALCULUS

A graphic interpretation of the derivative f 0 xð Þ of a function f(x) is that it equals the slope of
the curve plotted by that function. A graphic interpretation of the integral of a non-negative func-
tion f(x),

Ð b
a fðxÞdx, is that it equals the area under the graph of the function f(x) from x5 a to

x5 b, where
Ð
is the integral sign and f(x) is the integrand. Thus, integrals are useful for finding

areas under curves. Integrals can be regarded as the limit of sums involving functions of a con-
tinuous variable. Similarly, as we will discuss shortly, they are useful for determining expected
values and variances based on continuous probability distributions. As the expectation of a dis-
crete random variable requires summing a discrete countable number of terms, the expectation
of a continuous random variable requires integration to handle the continuous (uncountable)
number of values of the random variable.

Integral calculus is also useful for analyzing the behavior of variables (such as cash
flows) over time. An equation of the form dy

dt 5 fðtÞ is known as a differential equation and it
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might describe the rate of change of the variable y with respect to time t. The solution to this dif-
ferential equation y5 F(t), which is obtained by integration, describes the function y itself over
time. For example, f(t) might describe the change in value of the price y of an investment over
time (profit) while F(t) provides the actual value of the price.

1.5.1 Antiderivatives

Integrals of many functions can be determined by using the process of antidifferentiation, which
is the inverse process of differentiation. If F(x) is a function of x whose derivative equals f(x),
then F(x) is said to be the antiderivative or integral of f(x), written as follows:

FðxÞ5
ð
fðxÞ dx (1.13)

The function F(x) has the property that:

dFðxÞ
dx

5 fðxÞ (1.14)

One can always add any constant C to the function F(x), where F(x) is any one particular anti-
derivative of f(x), and it will still be an antiderivative of f(x); that is:

d

dx
F xð Þ1C½ �5 d

dx
F xð Þ½ � 1 d

dx
½C�5 f xð Þ1 05 f xð Þ

Thus, the general form of the indefinite integral of f(x) is:ð
fðxÞdx5 FðxÞ1C

where F(x) is one particular antiderivative of f(x). Observe that the indefinite integral of a function is
actually a family of functions, since each different choice of the constant C gives a different function.

Suppose, for example, we wished to evaluate
Ð
2x dx. We will seek a family of functions for

which the derivative is 2x. Since d
dx x2 1C
� �

5 2x,
Ð
2x dx5 x2 1C. Using the fact that integrals are

the inverse process of differentiation, one can derive integral rules. Table 1.2 provides a short list-
ing of integral rules that will be useful in this book.

TABLE 1.2 Table of Integrals

1.

ð
cxn dx5

cxn11

n1 1
1C for n 6¼ 21 ðpower ruleÞ

2.

ð
cfðxÞdx5 c

ð
fðxÞdx ðconstant multiple ruleÞ

3.

ð
ðfðxÞ1 gðxÞÞdx5

ð
fðxÞdx1

ð
gðxÞdx ðsum ruleÞ

4.

ð
1

x
dx5 lnjxj1C

5.

ð
ecx dx5

1

c
ecx 1C
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Next, suppose that we wished to evaluate
Ð

5
x 1 3ex 1 4x2 2 6
� �

dx. We will use all five rules in

Table 1.2 to evaluate this function, finding that
Ð

5
x 1 3ex 1 4x2 2 6
� �

dx5 5 ln jxj1
3ex 1 4

3 x
3 2 6x1C. Observe that there is only one constant C in the solution. This is sufficient

since C can be any arbitrary constant.

1.5.2 Definite Integrals

Using simple rules from geometry, one can find areas of elementary shapes such as squares,
rectangles, triangles, and circles. However, if we wish to find the area under the graph of an arbi-
trary curve, we need a new method. If the values a function f(x) are non-negative so that its
graph always lies above the x-axis, then the definite integral of f(x) from x5 a to x5 b is defined
to be the area between the x-axis and its graph from x5 a to x5 b (see Figure 1.3). For a general
function f(x), the definite integral from x5 a to x5 b equals the area above the x-axis minus the
area below the x-axis. The definite integral is denoted by:ðb

a
fðxÞ dx

Notice that the notation for this area uses the antiderivative sign. We will show this connection
shortly by using the fundamental theorem of calculus.

1.5.2.1 Reimann Sums

The definite integral for any continuous curve can be obtained as a limit of a sum of rectangular
areas (or so-called “signed areas” in case that part of the graph of f(x) is below the x-axis). More pre-
cisely, consider the graph of a function f(x) on the interval [a,b] of x-values. For the time being, sup-
pose that the function f(x) is non-negative. Divide the interval [a,b] into n subintervals of equal width

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

y = 2x – x2

y

x

FIGURE 1.3 The area under f(x)5 2x2 x2. When xi2 xi215 .1, the sum of the areas of the 10 rectangles equals 0.715.
As the number of rectangles approaches infinity, and their widths approach zero, the sum of their areas will approach 2/3.
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Δx5 (b2 a)/n. Consider the values of x on the x-axis that are endpoints of the subintervals. They
are: x05 a, x15 a1Δx, x25 a1 2Δx, . . ., xn5 a1 nΔx5 b. The n subintervals are: [x0,x1], [x1,x2], . . .,
[xn21,xn]. For the ith subinterval [xi21,xi], choose a convenient x-value xi* in this subinterval; that is,
xi21 # x�i # xi. The area between the graph of f(x) and the x-axis can be approximated by the sum of
the areas of the n rectangles so that the ith rectangle has height f(xi*) and width Δx. Since the area of
a rectangle is the product of its height and width, the area of the ith rectangle equals f(xi*)Δx. Thus,
the total area from x5 a to x5 b can be approximated by the sum:

Xn
i51

f x�i
� �

Δx

This sum is known as a Riemann sum. To illustrate this Riemann sum, consider the example of
estimating the area under the graph of y5 2x2 x2 from x5 0 to x5 1. We choose n5 10 so that
we are estimating the area under the graph by 10 narrow rectangles (see Figure 1.3). In this case
the width of each rectangle is Δx5 (12 0)/105 .1. The value of xi5 i/10. For this example, choose
x�i 5 xi. The sum of the areas of the 10 narrow rectangles equals the following Riemann sum, as
calculated in Table 1.3:

X10
i51

ð2xi 2 x2i ÞΔx5
X10
i51

2i

10
2

i

10

� 	2
" #

:15 :715

Now suppose that we increase the number of rectangles from n5 10 an arbitrarily large value
of n. For general n, the width of the each rectangle Δx5 1/n. The ith x-value is xi5 i/n. For sim-
plicity, choose x�i 5 xi 5 i=n. Clearly as n approaches infinity, the Riemann sum should approach

TABLE 1.3 Riemann Sums and Calculating the Area Under
f(x)5 2x2 x2

i f(xi) xi Δx f(xi)Δx

1 0.19 .1 0.1 0.019

2 0.36 .2 0.1 0.036

3 0.51 .3 0.1 0.051

4 0.64 .4 0.1 0.064

5 0.75 .5 0.1 0.075

6 0.84 .6 0.1 0.084

7 0.91 .7 0.1 0.091

8 0.96 .8 0.1 0.096

9 0.99 .9 0.1 0.099

10 1 1 0.1 0.100P
f(xi)Δx 5 0.715
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the exact area between the curve y5 2x2 x2 and the x-axis from x5 0 to x5 1. So the exact area
will equal:

lim
n-N

Xn
i51

f xið ÞΔx5 lim
n-N

Xn
i51

2i

n
2

i

n

� 	2
" #

1

n

Some algebraic manipulation reveals that the sum on the right equals 2
3 1

1
2n 2 1

6n2. Thus, the

exact area under the curve is 2/3 since 1
2n 2 1

6n2 approaches 0 as n approaches infinity.

Recall that this area is defined to be the definite integral of f(x)5 2x2 x2 from x5 0 to x5 1.
This can be expressed as:

Area5

ð1
0

2x2 x2
� �

dx5
2

3

In general, for any non-negative continuous function f(x), we can express the area as:ðb
a
f xð Þ dx5 lim

n-N

Xn
i51

f x�i
� �

Δx

Thus, as the number of subintervals Δx increases, and the widths of each narrow, the area
under f(x) approaches the limit of the sum of the rectangular areas. Note that if the graph of f(x)
extends below the x-axis, where the values of f(x) are negative, then the terms fðx�i ÞΔx are nega-
tive, and the terms f(xi)Δx are negative in equation x, such that the contribution to the definite
integral will be negative for this portion of the graph. Thus, in general, the definite integral of
any continuous function f(x) equals the area of the region above the x-axis minus the area of the
region below the x-axis.

It can be challenging or even impossible to compute the right-hand sum of x�i and find its
limit. The powerful fundamental theorem of calculus often allows us to easily find these areas
for a wide range of functions:

Fundamental theorem of calculus: If f(x) is any continuous function on the interval [a,b], then

ðb
a
fðxÞ dx5 FðxÞ b

a
5 FðbÞ2 FðaÞ






where F(x) is any particular antiderivative of f(x).
The essential steps of the proof of this theorem can be found in the companion website.
Recall our earlier example, find the area under the graph of y5 2x2 x2 from x5 0 to x5 1.

Using the fundamental theorem of calculus, the area equals:

ð1
0

ð2x2 x2Þ dx5 x2 2
1

3
x3




 1
0
5

�
12 2

1

3
13
�
2

�
02 2

1

3
03
�
5

2

3

The notation F xð Þjba is equivalent to F(b)2 F(a), but it is useful to use this notation as an intermedi-
ate step in evaluating definite integrals, since one first finds the antiderivative F(x) before
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evaluating F(x) at x5 b and x5 a and then finally taking their difference. Observe that this is what
we did in the example above.

We note that the definite integral is independent of the particular antiderivative that is chosen.
To illustrate this point, we recalculate the above definite integral allowing for different choices of
the antiderivative:

ð1
0

ð2x2 x2Þ dx5 x2 2
1

3
x3 1C





 1
0
5

�
12 2

1

3
13 1C

�
2

�
02 2

1

3
03 1C

�
5

2

3

As we shall discuss in Section 4.1.3, the importance of Riemann sums and their limits extends
beyond their applications to finding areas under curves. Many continuous valuation models are
based on Riemann sums and their limits as the widths of the horizontal intervals approach zero.

1.5.3 Change of Variables Technique to Evaluate Integrals

An important technique for evaluating integrals is a change of variables. This substitution tech-
nique can significantly reduce the apparent complexity of many functions. Suppose we wish to inte-
grate some function of the variable t. Suppose that we can choose a new variable x that is a function
of t (x5 x(t)) in just the right way, so that the integral takes the form:ð

fðxðtÞÞdx
dt

dt

In this case, one can change the variable of integration from the variable t to the variable x and
integrate the function f(x) to evaluate the integral. Once the integral has been evaluated, one sim-
ply substitutes in place of the variable x the function x(t). To express this symbolically:ð

fðxðtÞÞdx
dt

dt5

ð
fðxÞ dx5 FðxÞ1C5 FðxðtÞÞ1C

where F(x) is an antiderivative of f(x).
The proof of this result is quite simple. Suppose

Ð
fðxÞdx5 FðxÞ1C is the general antiderivative

of f(x). If we differentiate F(x(t))1C in the variable t, by the chain rule we have:

d

dt
½FðxðtÞÞ1C� 5 d

dx
F xð Þ1C½ �dx

dt
5 f xð Þdx

dt
5 fðxðtÞÞdx

dt

Thus, we have proved that the derivative of F(x(t))1C in the variable t equals fðxðtÞÞ dxdt, thus
the antiderivative of fðxðtÞÞ dxdt in the variable t equals F(x(t))1C, as we wanted to prove.

In order to make use of the technique of change of variables, one needs to be able to find
the right choice for the function x in terms of t. This is a matter of practice and being able
to visualize the function x(t) in the expression one is attempting to integrate. We should say
that the change of variables method only works if the function one is integrating is able to
be expressed in the special form fðxðtÞÞ dxdt and one can find the antiderivative of f(x) in the
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variable x. We also point out that in calculus textbooks the change of variables method is often
called u-substitution. This is because in calculus textbooks the substitution variable is often
denoted by u.

ILLUSTRATION: CHANGE OF VARIABLES TECHNIQUE FOR THE INDEFINITE INTEGRAL

Suppose that we seek to evaluate the indefinite integral
Ð ðt2 1 1Þ3t dt. First, we notice that the

quantity t immediately to the left of dt is almost the derivative of t21 1, which is the base of the
cubed function in the parentheses. This motivates the attempt to choose x5 t21 1, such that
dx
dt 5 2t. We now do a little bit of algebra to create the expression that we need:ð

ðt2 1 1Þ3t dt5
ð
1

2
ðt2 1 1Þ3ð2tÞ dt

So, in this case f xð Þ5 1
2 x

3 and x5 t21 1. Observe that dx
dt 5 2t such that dx5 2t dt. We rewrite

as follows: ð
1

2
ðt2 1 1Þ3ð2tÞ dt5

ð
1

2
x3 dx5

1

8
x4 1 C5

1

8
ðt2 1 1Þ4 1C

1.5.3.1 Change of Variables Technique for the Definite Integral

For definite integrals, the change of variables method is the same to determine the antideriva-
tive. The only additional feature is that one can also express the limits of integration in terms of
the new variable. If the limits of integration in the variable t are from a to b, then the limits of
integration in the variable x5 x(t) will be from x(a) to x(b). Thus:

ðb
a
fðxðtÞÞdx

dt
dt5

ðxðbÞ
xðaÞ

fðxÞ dx

Now, suppose that we seek to evaluate the indefinite integral
Ð 1
0 ðt211Þ3t dt. We already calcu-

lated the integral of this function in the previous example, and now only have only left to evalu-
ate the integral at the endpoints. Since x5 t21 1, then x(0)5 1 and x(1)5 2.

ð1
0

ðt2 1 1Þ3t dt5 1

8
x4

xð1Þ
xð0Þ 5

1

8
x4

2
1
5

24

8
2

14

8
5

15

8












We also could have obtained the solution by expressing the evaluated integral in terms of the
original variable t, and then evaluating the integral at the endpoints in terms of t:ð1

0

ðt2 1 1Þ3t dt5 1

8
ðt2 1 1Þ4





 1
0
5

1

8
ð12 1 1Þ4 2 1

8
ð02 1 1Þ4

5
15

8
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1.6 EXERCISES

1.1. Add the following matrices:

2 4 9

6 4 25

0 2 11

2
64

3
75 1

3 0 6

2 1 3

7 0 4

2
64

3
75 5

A B

1.2. Subtract E from D:

9 4 9

6 4 8

5 2 9

2
64

3
75 2

5 0 6

2 1 6

5 0 9

2
64

3
75 5

D E

1.3. Transpose the following:

a.

1 8 9

6 4 25

3 2 35

2
64

3
75

A

b.

9

6

3

7

2
6664
3
7775

y

c.

:09 :01 :04

:01 :16 :10

:04 :10 :64

2
64

3
75

V

1.4. Multiply the following:

7 4 9

6 4 12

3 2 17

2
64

3
75

7 6

5 1

9 12

2
64

3
75

A 3 B
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1.5. Suppose that A5
22 0
3 4

� �
and B5

7 3
5 21

� �
. Find the following:

a. 2A
b. AT

c. A1B
d. AB
e. BA

1.6. Invert the following matrices:

a. 8
� �

b.
1 0
0 1

� �

c.

4 0

0
1

2

2
4

3
5

d.
1 2
3 4

� �

e.
:02 :04
:06 :08

� �

f.
22 1
1:5 2:5

� �

g.

100

3
2
25

3

2
25

3

25

3

2
6664

3
7775

h.
2 0 0
2 4 0
4 8 20

2
4

3
5

1.7. Solve for matrix X in the matrix equation AXB1B5AB. Assume that the inverses
of A and B exist.

1.8. Solve each of the following for x:

a.

100=3 225=3
225=3 25=3

� �
x1
x2

� �
5

:01
:11

� �
C x 5 s

b.

:08 :08 :1 1
:08 :32 :2 1
:1 :2 0 0
1 1 0 0

2
664

3
775

x1
x2
x3
x4

2
664

3
775 5

:1
:1
:1
:1

2
664

3
775

C x 5 s
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1.9. Use matrices to solve the following system of equations:

:02x1 1 :04x2 5 :03

:06x1 1 :08x2 5 :01

1.10. Find the derivative of y with respect to x for the following polynomials:
a. y5 7x4

b. y5 5x22 3x1 2
c. y5 27x21 4x1 5

1.11. a. At what value for x is y minimized in Problem 1.9.b? How do we know that y is not
maximized at this point?

b. At what value for x is y maximized in Problem 1.9.c? How do we know that y is not
minimized at this point?

1.12. Suppose the amount of lumber (stumpage value, the value of mature timber before it is cut)
that could be produced from the timber in a given forest is a function of time, where s is
the amount that can be produced and t is the number of years from today:

s tð Þ5 t3 2 3t2 1 t1 10. This function reflects a recent fungus infection in many trees, and this
fungus infection is expected to grow.
a. Find the (instantaneous) rate of change of its stumpage value 1 year from today.

Verbally interpret your result.
b. Find the rate of change of its stumpage value 3 years after today.
c. Find the average rate of change of stumpage value from year 1 to year 3. Verbally

interpret your result.
d. Suppose that the stumpage value function s(t) reflects the fungus infection and the

damage that it is likely to cause over the future. How might this damage be reflected in
the value function?

1.13. Find derivatives for y with respect to x for each of the following:
a. y5 (4x1 2)3

b. y5 (3x21 8)
1/2

c. y5 6x(4x31 5x21 3)
d. y5 (1.5x2 4)3(2.5x2 3.5)4

e. y5 25/x2

f. y5 (6x2 16) 4 (10x2 14)
1.14. Use the following definition of a derivative (a) and the following statement (b) based on the

binomial theorem to verify the power rule, also given below (c):

a.
dy

dx
5 f 0ðxÞ5 lim

Δx-0

fðx1ΔxÞ2 fðxÞ
Δx

b. x1Δxð Þn 5
n

0

 !
xn Δxð Þ0 1

n

1

 !
xn21 Δxð Þ1 1

n

2

 !
xn22 Δxð Þ2 1 . . .

1
n

n� 1

 !
x1ðΔxÞn21 1

n

n

 !
x0ðΔxÞn

c. If y5
Xm

j51
cj � xnj , then dy

dx
5
Xm

j51
cj �nj � xnj21

RISK NEUTRAL PRICING AND FINANCIAL MATHEMATICS: A PRIMER

30 1. PRELIMINARIES AND REVIEW



1.15. Let y5 x3 and x5 t21 1. Use the chain rule to find dy/dt.
1.16. Differentiate each of the following with respect to x:

a. y5 e.05x

b. y5 (ex)/x
c. y5 5 ln(x)
d. y5 ex ln(x)
e. y5 x2 ex

f. y5 ln(5x31 x)

g. y5 5x3 2 6
ffiffiffi
x

p
1 2ex

h. y5 x2 ln x
1.17. Here is an exercise unrelated to finance. A square floor is measured to have side length 20

feet, with an error of plus or minus 0.1 feet. Use the differential to estimate the resulting
possible error in measuring the area of the floor.

1.18. a. Consider the function y5 x3. Let x05 5. Now, suppose we wish to increase x by Δx5 1
to x15 6. Estimate y1 based on a third-order Taylor approximation.

b. How does this approximation compare to an exact solution for y1? Why?
c. Estimate y1 based on a second-order Taylor approximation.
d. Estimate y1 based on a first-order Taylor approximation.
e. Consider the function y5 10x3. Let x05 2, and suppose that we wish to increase x by

Δx5 3 to x15 5. Use first-, second-, then third-order Taylor polynomial expansions to
evaluate y1.

1.19. Our objective is to find the value for x, which enables us to maximize the function
y5 50x22 10x subject to the constraint that .1x# 100. Set up and solve an appropriate
Lagrange function for this problem. This exercise is intended to be a somewhat trivial
illustration for setting up and solving a Lagrange optimization problem.

1.20. An investor wishes to budget her wealth w5 $10,000 in savings so that her spending over
4 years yields the highest level of utility (U, which can be considered to be satisfaction).
She has mapped out a utility function that accounts for her consumption (xt) each year
t over the 4-year period:

U5 100x1 1 200x2 1 250x3 1 350x4 2 :01x21 2 :2x22 2 :03x23 2 :04x24 2 :2x3x4

Unfortunately, price levels are expected to rise each year such that what $1 buys in
1 year will cost $2 in 2 years, $3 in 3 years, and $4 in 4 years. Her spending over the
4-year period cannot exceed $10,000.
a. If this investor seeks to maximize her total utility over the 4-year period, what are

optimal annual consumption levels for each year? Do bear in mind her $10,000 wealth
constraint.

b. What is the total utility level for the consumer?
1.21. a. Find the antiderivative for the function f(x)5 10x2 x2.

b. What is the area under the curve f(x)5 10x2 x2 between 0 and 1?
c. Find the Reimann sum for the function f(x)5 10x2 x2 based on five rectangles over the

range 0 to 1.
d. Find the Reimann sum for the function f(x)5 10x2 x2 based on ten rectangles over the

range 0 to 1.
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1.22. Integrate each of the following functions over x:
a. f(x)5 0
b. f(x)5 7
c. f(x)5 2x
d. f(x)5 21x2

e. f(x)5 21x21 5
f. f(x)5 ex

g. f(x)5 .5e.5x

h. f(x)5 5x ln(5)
i. f(x)5 1/x
j. f(x)5 5/x1 3ex1 4x2�x

1.23. a. Use the fundamental theorem of integral calculus to find the area between x5 0 and
x5 1 under the function f(x)5 8x2 9x2.

b. Plot out on an appropriate graph 20 rectangles representing the rectangles for the
Reimann sum for this function between x5 0 and x5 1.

1.24. Consider the function f(x)5 10x2 x2. The area under a curve represented by this function
over the range from x5 a5 0 to x5 b5 1 can be computed with a limit of Riemann sums or
through the process of antidifferentiation. Verify that as the number of rectangles used to
compute the Riemann sums approaches infinity, and the widths of these rectangles approach
zero, the limit of the Riemann sums and antidifferentiation will produce the same area.

1.25. Evaluate
Ð 3
1 x2 dx.

1.26. Suppose that z, y, and x are all functions of t such that:

1

z

dz

dt
5 x

dx

dt
1 5

dy

dt

Find z in terms of x and y.

NOTES

1. Normative models, proposing what “ought to be,” are distinguished from positive models that predict “what will be.”

2. If it is possible to multiply two matrices, they are said to be conformable for multiplication. Any matrix can be

multiplied by a scalar, where the product is simply each element times the value of the scalar.

3. Y is defined similarly to X. We can use the Gauss�Jordan elimination procedure to show that αT5 [0, 0, 0] is

the only solution to this equation, such that the set is linearly independent.

4. Note here that α152v12
1
2v21

1
2v3, α25

7
5v11

3
10v2 2 1

2v3 and α35 23v11v3.

5. The law of one price states that securities or portfolios producing the same payoff structures must sell for the

same price. Arbitrage opportunities do not exist when the law of one price holds.

6. fv xð Þ5 d2y

dx2
5

d2ln x

dx2
5

dx21

dx
52 x22:

7. In many finance problems, we will want to use inequalities as constraints. However, it is convenient to convert

them to equalities for Lagrange functions.

8. If the constraint is not binding, λ will equal zero. If the constraint is binding in this example, x11 .2x2 will

equal 10. Since either the contents within the parentheses or the Lagrange multiplier will equal zero, the

numerical value of the function that we have added to our original function to be optimized will be zero.

Although the numerical value of our original function is unchanged by the supplement representing the

constraint, its derivatives will be affected by the constraint.

RISK NEUTRAL PRICING AND FINANCIAL MATHEMATICS: A PRIMER

32 1. PRELIMINARIES AND REVIEW


	1 Preliminaries and Review
	1.1 Financial Models
	1.2 Financial Securities and Instruments
	1.3 Review of Matrices and Matrix Arithmetic
	1.3.1 Matrix Arithmetic
	1.3.1.1 Matrix Arithmetic Properties
	1.3.1.2 The Inverse Matrix
	Illustration: The Gauss–Jordan Method
	Illustration: Solving Systems of Equations


	1.3.2 Vector Spaces, Spanning, and Linear Dependence
	1.3.2.1 Linear Dependence and Linear Independence
	Illustrations: Linear Dependence and Independence

	1.3.2.2 Spanning the Vector Space and the Basis
	Illustration: Spanning the Vector Space and the Basis



	1.4 Review of Differential Calculus
	1.4.1 Essential Rules for Calculating Derivatives
	1.4.1.1 The Power Rule
	1.4.1.2 The Sum Rule
	1.4.1.3 The Chain Rule
	1.4.1.4 Product and Quotient Rules
	1.4.1.5 Exponential and Log Function Rules

	1.4.2 The Differential
	WARNING!!! DUMMY ENTRY
	Illustration: The Differential and the Error


	1.4.3 Partial Derivatives
	1.4.3.1 The Chain Rule for Two Independent Variables

	1.4.4 Taylor Polynomials and Expansions
	1.4.5 Optimization and the Method of Lagrange Multipliers
	WARNING!!! DUMMY ENTRY
	Illustration: Lagrange Optimization



	1.5 Review of Integral Calculus
	1.5.1 Antiderivatives
	1.5.2 Definite Integrals
	1.5.2.1 Reimann Sums

	1.5.3 Change of Variables Technique to Evaluate Integrals
	WARNING!!! DUMMY ENTRY
	Illustration: Change of Variables Technique for the Indefinite Integral

	1.5.3.1 Change of Variables Technique for the Definite Integral


	1.6 Exercises
	Notes




