
C H A P T E R  F O U R

THE TIME VALUE OF MONEY

4.1 INTRODUCTION AND FUTURE VALUE

The perspective and the organization of this chapter differs from that of chapters 2 and
3 in that topics are arranged by finance application rather than mathematics area. The
mathematics tools presented in chapters 2 and 3 are applied in this chapter to closely
examine the analytical aspects underlying what might be the single most important
topic in finance – the time value of money. In this chapter, we study how investors and
borrowers interact to value investments and determine interest rates on loans and fixed
income securities.

Interest is paid by borrowers to lenders for the use of lenders’ money. The level of
interest charged is typically stated as a percentage of the principal (the amount of the
loan). When a loan matures, the principal must be repaid along with any unpaid accu-
mulated interest. In a free market economy, interest rates are determined jointly by
the supply of and demand for money. Thus, lenders will usually attempt to impose as
high an interest rate as possible on the money they lend; borrowers will attempt to obtain
the use of money at the lowest interest rates available to them. Competition among
borrowers and competition among lenders will tend to lead interest rates toward some
competitive level. Factors affecting the levels of interest rates will do so by affecting sup-
ply and demand conditions for money. Among these factors are inflation rates, loan
risks, investor intertemporal monetary preferences (how much individuals and insti-
tutions prefer to have money now rather than have to wait for it), government policies,
and the administrative costs of extending credit.

4.2 SIMPLE INTEREST

(Background reading: sections 2.4, 2.7, and 4.1)

Interest is computed on a simple basis if it is paid only on the principal of the loan.
Compound interest is paid on accumulated loan interest as well as on the principal. Thus,
if a sum of money (X0) were borrowed at an annual interest rate i and repaid at the
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52 The time value of money

end of n years with accumulated interest accruing on a simple basis, the total sum repaid
(FVn or Future Value at the end of year n) is determined as follows:

FVn = X 0(1 + ni ) (4.1)

The subscripts n and 0 merely designate time; they do not imply any arithmetic func-
tion. The product ni when multiplied by X0 reflects the value of interest payments to
be made on the loan; the value 1 accounts for the fact that the principal of the loan
must be repaid. If the loan duration includes some fraction of a year, the value of n will
be fractional; for example, if the loan duration were one year and three months, n would
be 1.25. The total amount paid (or, the future value of the loan) will be an increasing
function of the length of time the loan is outstanding (n) and the interest rate (i) charged
on the loan. For example, if a consumer borrowed $1,000 at an interest rate of 10%
for one year, his total repayment would be $1,100, determined from equation (4.1) as
follows:

FV1 = $1,000(1 + 1 · 0.1) = $1,000 · 1.1 = $1,100.

If the loan were to be repaid in two years, its future value would be determined as follows:

FV2 = $1,000(1 + 2 · 0.1) = $1,000 · 1.2 = $1,200.

Continuing our example, if the loan were to be repaid in five years, its Future Value
would be

FV5 = $1,000(1 + 5 · 0.1) = $1,000 · 1.5 = $1,500.

The longer the duration of a loan, the higher will be its future value. Thus, the longer
lenders must wait to have their money repaid, the greater will be the total interest pay-
ments made by borrowers.

4.3 COMPOUND INTEREST

(Background reading: sections 2.7, 3.1, and 4.2)

Interest is computed on a compound basis when the borrower pays interest on 
accumulated interest as well as on the loan principal. If interest on a given loan must
accumulate for a full year before it is compounded, the future value of this loan is deter-
mined as follows:

FVn = X0(1 + i )n. (4.2)

For example, if an individual were to deposit $1,000 into a savings account paying
annually compounded interest at a rate of 10% (here, the bank is borrowing money),
the future value of the account after five years would be $1,610.51, determined by
equation (4.2) as follows:
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FV5 = $1,000(1 + 0.1)5 = $1,000 · 1.15 = $1,000 · 1.61051 = $1,610.51.

Notice that this sum is greater than the future value of the loan ($1,500) when inter-
est is not compounded.

The compound interest formula can be derived intuitively from the simple interest
formula. If interest must accumulate for a full year before it is compounded, then the
future value of the loan after one year is $1,100, exactly the same sum as if interest
had been computed on a simple basis:

FVn = X0(1 + ni) = X0(1 + 1 · i ) = X0(1 + i )1 = $1,000(1 + 0.1) = $1,100. (4.3)

The future values of loans where interest is compounded annually and when interest
is computed on an annual basis will be identical only when n equals one. Since the
value of this loan is $1,100 after one year and interest is to be compounded, interest
and future value for the second year will be computed on the new balance of $1,100:

FV2 = X0(1 + 1 · i)(1 + 1 · i) = X0(1 + i)(1 + i) = X0(1 + i)2,

FV2 = $1,000(1 + 0.1)(1 + 0.1) = $1,000(1 + 0.1)2 = $1,210. (4.4)

This process can be continued for five years:

FV5 = $1,000(1 + 0.1)(1 + 0.1)(1 + 0.1)(1 + 0.1)(1 + 0.1) 

= $1,000(1 + 0.1)5 = $1,610.51.

More generally, the process can be applied for a loan of any maturity. Therefore:

FVn = X0(1 + i)(1 + i) · · · (1 + i) = X0(1 + i)n,

FVn = $1,000(1 + 0.1)(1 + 0.1) · · · (1 + 0.1) = $1,000(1 + 0.1)n. (4.5)

4.4 FRACTIONAL PERIOD COMPOUNDING OF INTEREST

In the previous examples, interest is compounded annually; that is, interest must
accumulate at the stated rate i for an entire year before it can be compounded or re-
compounded. In many savings accounts and other investments, interest can be com-
pounded semiannually, quarterly, or even daily. If interest is to be compounded more
than once per year (or once every fractional part of a year), the future value of such
an investment will be determined as follows:

FVn = X0(1 + i/m)mn, (4.6)

where interest is compounded m times per year. The interpretation of this formula is
fairly straightforward. For example, if m is 2, then interest is compounded on a semi-
annual basis. The semiannual interest rate is simply i/m or i/2. If the investment is held
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for n periods, then it is held for 2n semiannual periods. Thus, we compute a semi-
annual interest rate i/2 and the number of semiannual periods the investment is held
2 · n. If $1,000 were deposited into a savings account paying interest at an annual
rate of 10% compounded semiannually, its future value after five years would be
$1,628.90, determined as follows:

FV5 = $1,000(1 + 0.1/2)2·5 = $1,000(1.05)10 = $1,000(1.62889) = $1,628.90.

Notice that the semiannual interest rate is 5% and that the account is outstanding for
ten six-month periods. This sum of $1,628.90 exceeds the future value of the account
if interest is compounded only once annually ($1,610.51). In fact, the more times per
year interest is compounded, the higher will be the future value of the account. For
example, if interest on the same account were compounded monthly (12 times per year),
the account’s future value would be $1,645.31:

FV5 = $1,000(1 + 0.1/12)12·5 = $1,000(1.008333)60 = $1,645.31.

The monthly interest rate is 0.008333 and the account is open for m · n or 60 months.
With daily compounding, the account’s value would be $1,648.61:

FV5 = $1,000(1 + 0.1/365)365·5 = $1,648.61.

Therefore, as m increases, future value increases, as in table 4.1. However, this rate of
increase in future value becomes smaller with larger values for m; that is, the increases
in FVn induced by increases in m eventually become quite small. Thus, the difference
in the future values of two accounts where interest is compounded hourly in one and
every minute in the other may actually be rather trivial.

54 The time value of money

Table 4.1 Future values and annual percentage yields of accounts with initial $10,000
deposits at 10%

Years to Future value Future value Future value Future value Future value
maturity, simple compounded compounded compounded compounded 
n interest ($) annually ($) monthly ($) daily ($) continuously ($)

1 11,000 11,000 11,047 11,052 11,052
2 12,000 12,100 12,204 12,214 12,214
3 13,000 13,310 13,481 13,498 13,499
4 14,000 14,641 14,894 14,917 14,918
5 15,000 16,105 16,453 16,486 16,487
10 20,000 25,937 27,070 27,179 27,183
20 30,000 67,275 73,281 73,870 73,891
30 40,000 174,494 198,374 200,773 200,857
50 60,000 1,173,909 1,453,699 1,483,116 1,484,140

Annual Varies 0.100000 0.104713 0.1051557 0.1051709
percentage with n
yield
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APPLICATION 4.1: APY AND BANK ACCOUNT COMPARISONS

Financial institutions often have many ways of defining the terms or rules associated
with their loans, accounts, and other investments. Such large numbers of terms and
rules frequently lead to confusion among investors and consumers, particularly when
trying to compare their various alternatives. For this reason, there exist several con-
ventions which are intended to standardize the disclosure of these terms. For example,
we have seen in the previous two sections the impact that changing the compound-
ing intervals has on future value. Comparison between investments is more complic-
ated when their numbers of compounding intervals differ. To simplify the comparison
between loans with varying compounding intervals, it is often useful to compute
annual percentage yields, also known as equivalent annual rates. The annual percent-
age yield (APY ) represents the yield that, if compounded once per year, will produce
the same future value as the stated rate i compounded m times per year:1

Thus, we can compute APY as follows:

(4.7)

Because the annual percentage yield simplifies comparison between accounts with dif-
ferent compounding intervals, U.S. banks are normally required by law to disclose APYs
along with their stated interest rates in their advertisements soliciting bank accounts.
Consider an example where a savings account at bank X pays 6% interest com-
pounded daily and a similar account at bank Y pays 6 % interest, compounded semi-
annually. Which account will pay more to an investor who leaves a $100 deposit for
one year? Based on equation (4.6), we can obtain the following future values:

Thus, an account paying a stated rate of 6% compounded daily yields a future value
equivalent to an account paying slightly more than 6.18% compounded annually. An
account paying a stated rate of 6.25% compounded semiannually yields a future value
equivalent to an account paying slightly more than 6.437% compounded annually.
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56 The time value of money

Therefore, the account in bank Y is preferred to that at bank X. We can arrive at the
same preference ranking by examining annual percentage yields:

Because the account at bank Y has the higher APY, it is preferred. The account with
the higher APY will produce a higher future value. However, it is not necessarily true
that the account with the highest stated rate also has the highest APY.

A 1997 advertisement in a New York newspaper offered a five-year certificate of deposit
account paying interest at an annual rate of 5.83%, compounded daily. The annual
percentage yield (APY ) on this account was advertised at 6.00%. Given these details,
the future value of $100 deposited into this account can be computed to be $133.84:

FV = $100(1 + 0.0583/365)365·5 = $133.84.

The APY of this account is determined as follows:

APY = (1 + 0.0583/365)365 − 1 = 0.06003.

The 6% APY advertised by the bank was approximately correct; such advertisements
are often rounded slightly. In any case, the future value of this account can be deter-
mined with the 6.003% account APY as follows:

FV = $100(1 + 0.06003)5 = $133.84.

A $100 initial deposit into a five-year CD account paying interest at an annual rate of
5.85%, compounded quarterly, would have a future value of $133.69:

FV = $100(1 + 0.0585/4)4·5 = $133.69.

The APY of this account is 0.0598, determined as follows:

APY = (1 + 0.0585/4)4 − 1 = 0.0598.

Note that the future value and the APY of the second account are lower than those of
the first account – even though the stated interest rate on the second account is
higher. Compounding can have a significant effect on both future value and APY.

4.5 CONTINUOUS COMPOUNDING OF INTEREST

(Background reading: sections 2.5 and 4.4)

If interest were to be compounded an infinite number of times per period, we would
say that interest is compounded continuously. However, we cannot obtain a numerical
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Annuity future values 57

solution for future value by merely substituting in ∞ for m in equation (4.6) – 
calculators have no “∞” key. In the previous section, we saw that increases in m
cause the future value of an investment to increase. As m approaches infinity, FVn

continues to increase, however at decreasing rates. More precisely, as m approaches
infinity (m → ∞), the future value of an investment can be defined as follows:

FVn = X0e in, (4.8)

where e is the natural log whose value can be approximated at 2.718, or derived as
in section 2.5.

If an investor were to deposit $1,000 into an account paying interest at a rate of
10%, continuously compounded (or compounded an infinite number of times per
year), the account’s future value would be approximately $1,648.64:

FV5 = $1,000 · e1·5 ≈ $1,000 · 2.7180.5 = $1,648.64.

The Future Value of this account exceeds only slightly the value of the account if inter-
est were compounded daily. Also, note that continuous compounding simply means
that interest is compounded an infinite number of times per time period.

4.6 ANNUITY FUTURE VALUES

(Background reading: sections 2.8, 3.4, and 4.3)

An annuity is a series of equal payments made at equal intervals. Suppose that pay-
ments are to be made into an interest-bearing account. The future value of that
account will be a function of interest accruing on prior deposits as well as the deposits
themselves. A future value annuity factor (fvaf ) is used to determine the future value
of an annuity. This annuity is a series of equal payments made at identical intervals.
The future value annuity factor may be derived through the use of the geometric 
expansion procedure discussed in section 3.4. This technique is very useful for 
future value computations when a large number of time periods are involved. The 
geometric expansion enables us to reduce a repetitive expression requiring many 
calculations to an expression that can be computed much more quickly. Suppose that
we wish to determine the future value of an account based on a payment of X made
at the end of each year t for n years, where that account pays an annual interest 
rate equal to i:

FVA = X [(1 + i)n−1 + (1 + i)n−2 + . . . + (1 + i)2 + (1 + i)1 + 1]. (4.9)

The payment made at the end of the first year will accumulate interest for a total of 
n − 1 years, the payment at the end of the second year will accumulate interest for 
n − 2 years, and so on. Clearly, determining the future value of this account with 
equation (4.9) will be very time-consuming if n is large. The first step in the geometric
expansion to simplify equation (4.9) is to multiply both of its sides by 1 + i:
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FVA(1 + i) = X [(1 + i)n + (1 + i)n−1 + . . . + (1 + i)3 + (1 + i)2 + (1 + i)]. (4.10)

The second step in this geometric expansion is to subtract equation (4.9) from equa-
tion (4.10), to obtain:

FVA(1 + i) − FVA = X [(1 + i)n − 1]. (4.11)

Notice that the subtraction led to the cancellation of many terms, reducing the 
equation that we wish to compute with to a much more manageable size. Finally, we
rearrange terms in equation (4.12) to obtain equations (4.12) and (4.13):

FVA · 1 + FVA · i − FVA = X [(1 + i)n − 1] = FVA · i = X [(1 + i)n − 1], (4.12)

(4.13)

Practicing derivations such as this is an excellent way to understand the intuition
behind financial formulas. Understanding the derivations is necessary in order to be
able to modify the formulas for a variety of more complex (and realistic) scenarios.

Consider an example applicable to many individuals who open Individual Retire-
ment Accounts (I.R.A.’s), from which they may withdraw when they reach the age of
59 years. Consider an individual who makes a $2,000 contribution to his I.R.A. at
the end of each year for 20 years. All of his contributions receive a 10% annual rate
of interest, compounded annually. What will be the total value of this account, includ-
ing accumulated interest, at the end of the 20-year period? Equation (4.13) can be used
to evaluate the future value of this annuity, where X is the annual contribution made
at the end of each year by the investor to his account, i is the interest rate on the account,
and FVA is the future value of the annuity. The future value of this individual’s I.R.A.
is $114,550:

This future value annuity equation can be used whenever identical periodic contribu-
tions are made toward an account. Section 4.8 will present a discussion on determin-
ing the present value of such a series of cash flows. (The term “present value” is also
defined later in section 4.8.)

Note that each of the above calculations assumes that cash flows are paid at the end
of each period. If, instead, cash flows were realized at the beginning of each period, the
annuity would be referred to as an annuity due. The annuity due would generate an
extra year of interest on each cash flow. Hence, the future value of an annuity due is
determined by simply multiplying the future value annuity formula by (1 + i):
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Annuity future values 59

From the above example, we find that the future value of the individual’s I.R.A. is
$126,005 if payments to the I.R.A. are made at the beginning of each year:

APPLICATION 4.2: PLANNING FOR RETIREMENT
(Background reading: sections 2.5, 3.1, and 4.5)

Suppose that a 23-year-old accountant wishes to retire as a millionaire based on 
her retirement savings account. She intends to open and contribute to a tax-deferred
401k retirement account sponsored by her employer each year until she retires with
$1,000,000 in that account. Would she meet her retirement goal if she deposited $10,000
into that account at the end of each year until she is 65 years of age? Assume that 
her account will generate an annual rate of interest equal to 5% for each of the next
42 years.

Equation (4.13) will be used to solve this problem:

Now, suppose that she would like to retire as soon as possible with $1,000,000 in her
account. Assuming that nothing else associated with her situation changes, what is
the earliest age at which she can retire?

Now, we will use equation (4.13) to algebraically solve for n, the number of years
that the accountant must wait to retire:

Since payments are made at the end of each year, the accountant must wait 37 years
when she is 60 before she can retire as a millionaire. Note that we were able to find a
closed-form solution (put n on one side alone) using simple algebra. In many time value
problems, the exact placement of the exponent n will prevent us from obtaining a solu-
tion so easily.
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4.7 DISCOUNTING AND PRESENT VALUE

(Background reading: section 4.3)

Cash flows realized at the present time have a greater value to investors than cash flows
realized later, for the following reasons:

1 Inflation. The purchasing power of money tends to decline over time.
2 Risk. We never know with certainty whether we will actually realize the cash flow

that we are expecting.
3 The option to either spend money now or defer spending it is likely to be worth more

than being forced to defer spending the money.

The purpose of the Present-Value model is to express the value of a future cash flow
in terms of cash flows at present. Thus, the Present-Value model is used to compute
how much an investor would pay now for the expectation of some cash flow to be received
in n years. The present value of this cash flow would be a function of inflation, the length
of wait before the cash flow is received (n), the riskiness associated with the cash flow,
and the time value an investor associates with money (how much he needs money now
as opposed to later). Perhaps the easiest way to account for these factors when evalu-
ating a future cash flow is to discount it in the following manner:

(4.15)

where CFn is the cash flow to be received in year n, k is an appropriate discount rate
accounting for risk, inflation, and the investor’s time value associated with money, and
PV is the present value of that cash flow. The discount rate enables us to evaluate a
future cash flow in terms of cash flows realized today. Thus, the maximum a rational
investor would be willing to pay for an investment yielding a $9,000 cash flow in six
years assuming a discount rate of 15% would be $3,891, determined as follows:

In the above example, we simply assumed a 15% discount rate. Realistically, per-
haps the easiest value to substitute for k is the current interest or return rate on loans
or other investments of similar duration and riskiness. However, this market-determined
interest rate may not consider the individual investor’s time preferences for money.
Furthermore, the investor may find difficulty in locating a loan (or other investment)
of similar duration and riskiness. For these reasons, more scientific methods for deter-
mining appropriate discount rates will be discussed later. In any case, the discount rate
should account for inflation, the riskiness of the investment, and the investor’s time
value for money.
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Deriving the present-value formula

The present-value formula can be derived easily from the compound interest formula.
Assume that an investor wishes to deposit a sum of money into a savings account pay-
ing interest at a rate of 15%, compounded annually. If the investor wishes to withdraw
from his account $9,000 in six years, how much must he deposit now? This answer
can be determined by solving the compound interest formula for X0:

Therefore, the investor must deposit $3,890.95 now in order to withdraw $9,000 in
six years at 15%.

Notice that the present-value equation (4.15) is almost identical to the compound
interest formula where we solve for the principal (X0 ):

Mathematically, these formulas are the same; however, there are some differences
in their economic interpretations. In the interest formulas, interest rates are determined
by market supply and demand conditions, whereas discount rates are individually deter-
mined by investors themselves (although their calculations may be influenced by mar-
ket interest rates). In the present-value formula, we wish to determine how much some
future cash flow is worth now; in the interest formula above, we wish to determine
how much money must be deposited now to attain some given future value.

4.8 THE PRESENT VALUE OF A SERIES OF CASH FLOWS

(Background reading: sections 2.8 and 4.7)

Suppose that an investor needs to evaluate a series of cash flows. She needs only to
discount each separately and then sum the present values of each of the individual 
cash flows. Thus, the present value of a series of cash flows CFt received in time period t
can be determined by the following expression:

(4.16)

For example, if an investment were expected to yield annual cash flows of $200 for
each of the next five years, assuming a discount rate of 5%, its present value would be
$865.90:
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62 The time value of money

Therefore, the maximum price an individual should pay for this investment is
$865.90, even though the cash flows yielded by the investment total $1,000. Because
the individual must wait up to five years before receiving the $1,000, the investment
is worth only $865.90. Use of the present-value series formula does not require that
cash flows CFt in each year be identical, as does the annuity model presented in the
next section.

4.9 ANNUITY PRESENT VALUES

(Background reading: sections 3.4, 4.6, and 4.8)

The expression for determining the present value of a series of cash flows can be quite
cumbersome, particularly when the payments extend over a long period of time. This
formula requires that n cash flows be discounted separately and then summed. When
n is large, this task may be rather time-consuming. If the annual cash flows are iden-
tical and are to be discounted at the same rate, an annuity formula can be a useful
time-saving device. The same problem as discussed in the previous section can be solved
using the following annuity formula:

(4.17)

where CF is the level of the annual cash flow generated by the annuity (or series). Use
of this formula does require that all of the annual cash flows be identical. Thus, the
present value of the cash flows in the problem discussed in the previous section is $865.90,
determined as follows:

As n becomes larger, this formula becomes more useful relative to the present-value
series formula discussed in the previous section. However, the annuity formula requires
that all cash flows be identical and be paid at the end of each year. The present-value
annuity formula can be derived easily from the perpetuity formula discussed in sec-
tion 4.11, or from the geometric expansion procedure described later in this section.

Note that each of the above calculations assumes that cash flows are paid at the end
of each period. If, instead, cash flows were realized at the beginning of each period, the
annuity would be referred to as an annuity due. Each cash flow generated by the annu-
ity due would, in effect, be received one year earlier than if cash flows were realized 
at the end of each year. Hence, the present value of an annuity due is determined by
simply multiplying the present-value annuity formula by (1 + k):

(4.18)
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The present value of the five-year annuity due discounted at 5% is determined as follows:

= $4,000[0.2164738](1.05) = 909.19.

Deriving the present-value annuity formula

The present value annuity factor (pvaf ) may be derived through use of the geometric
expansion (see section 3.4). Consider the case where we wish to determine the present
value of an investment based on a cash flow of CF made at the end of each year t for
n years, where the appropriate discount rate is k:

(A)

Thus, the payment made at the end of the first year is discounted for one year, the 
payment at the end of the second year is discounted for two years, and so on. Clearly,
determining the present value of this account will be very time-consuming if n is large.
The first step of the geometric expansion is to multiply both sides of (A) by (1 + k):

(B)

The second step in the geometric expansion is to subtract equation (A) from equa-
tion (B), to obtain:

(C)

which simplifies to

(D)

Notice that the subtraction led to the cancellation of many terms, reducing the equa-
tion that we wish to compute to a much more manageable size. Finally, we cancel the
ones on the left side and divide both sides of equation (D) by k, to obtain:
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APPLICATION 4.3: PLANNING FOR RETIREMENT, PART II
(Background reading: application 4.2 and section 4.9)

Suppose that the 23-year-old accountant from application 4.2 wishes to retire as a mil-
lionaire based on her retirement savings account, but needs to know what the present
value of that million-dollar account is. If the account is open for the full 37 years, its
future value will be $1,016,282, based on equation (4.13). Based on a discount rate
of 5% and assuming that the account is open for 37 years, its present value is easily
determined from equation (4.15) as follows:

In present-value terms, this million-dollar account is obviously worth much less than
$1,000,000. However, what is the present value of the annual series $10,000
deposits that she will make to that account? Again, based on a 5% discount rate, we
determine this present value with equation (4.17) as follows:

Notice that the present value of contributions that she makes to the account is iden-
tical to the present value of what she will be able to retire with.

APPLICATION 4.4: VALUING A BOND

Because the present value of a series of cash flows is simply the sum of the present 
values of the cash flows, the annuity formula can be combined with other present-value
formulas to evaluate investments. Consider, for example, a 7% coupon bond making
annual interest payments for nine years. If this bond has a $1,000 face (or par) value,
and its cash flows are discounted at 6%, its cash flows will be $70 in each of the nine
years plus $1,000 in the tenth year. The present value of the bond’s cash flows can be
determined as follows:

= $476.118 + 591.898 = $1,068.017.

Thus, the value of a bond is simply the sum of the present values of the cash flow streams
resulting from interest payments and from principal repayment.
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Amortization 65

Now, let us revise the above example to value another 7% coupon bond. This bond
will make semiannual (twice yearly) interest payments for nine years. If this bond has
a $1,000 face (or par) value, and its cash flows are discounted at the stated annual
rate of 6%, its value can be determined as follows:

= $481.373 + 587.395 = $1,068.768.

Again, the value of the bond is the sum of the present values of the cash flow streams
resulting from interest payments and from the principal repayment. However, the semi-
annual discount rate equals 3% and payments are made to bondholders in each of 18
semiannual periods.

4.10 AMORTIZATION

(Background reading: section 4.9)

At the beginning of this chapter, we derived the concept of present value from that of
future value. Amortization is essentially a topic relating to interest, but the present-
value annuity model presented in this chapter is crucial to its development. Amortiza-
tion is the payment structure associated with a loan. That is, the amortization schedule
of a loan is its payment schedule. Consider the annuity model from equation (4.17):

(4.17)

Typically, when a loan is amortized, the loan repayments will be made in equal
amounts; that is, each annual or monthly payment will be identical. At the end of the
repayment period, the balance (amount of principal remaining) on the loan will be zero.
Thus, each payment made by the borrower is applied to the principal repayment as
well as to interest. A bank lending money will require that the sum of the present 
values of its repayments be at least as large as the sum of money it loans. Therefore, 
if the bank loans a sum of money equal to PV for n years at an interest rate of i, the
amount of the annual loan repayment will be CF:

(4.18)

For example, if a bank were to extend a $865,895 five year mortgage to a corporation
at an interest rate of 5%, the corporation’s annual payment on the mortgage would
be $200,000, determined by equation (4.18):
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66 The time value of money

Table 4.2 The amortization schedule of a $865,895 loan with equal annual payments for
five years at 5%

Year Principal ($) Payment ($) Interest ($) Payment to principal ($)

1 865,895 200,000 43,295 156,705
2 709,189 200,000 35,459 164,541
3 544,649 200,000 27,232 172,768
4 371,881 200,000 18,594 181,406
5 190,476 200,000 9,524 190,476

The loan is fully repaid by the end of the fifth year. The principal represents the balance at the
beginning of the given year. The payment is made at the end of the given year, and includes
one year of interest accruing on the principal from the beginning of that year. The remaining
part of the payment is payment to the principal. This payment to the principal is deducted
from the principal or balance as of the beginning of the following year.

Thus, each year, the corporation will pay $200,000 toward both the loan principal
and interest obligations. The amounts attributed to each are given in table 4.2. Notice
that as payments are applied toward the principal, the principal declines; correspond-
ingly, the interest payments decline. Nonetheless, total annual payments are identical
until the principal diminishes to zero in the fifth year.

APPLICATION 4.5: DETERMINING THE MORTGAGE PAYMENT

A family has purchased a home with $30,000 down and a $300,000 mortgage. The
mortgage will be amortized over 30 years with equal monthly payments. The interest
rate on the mortgage will be 9% per year. Based on this data, we would like to deter-
mine the monthly mortgage payment and compile an amortization table decomposing
each of the monthly payments into interest and payment toward principle.

First, we will express annual data as monthly data. Three hundred and sixty (12 · 30)
months will elapse before the mortgage is fully paid, and the monthly interest rate will
be 0.0075, or 9% divided by 12. Given this monthly data, monthly mortgage payments
are determined as follows:

Table 4.3 depicts the amortization schedule for this mortgage.
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Perpetuity models 67

Table 4.3 The amortization schedule of a $300,000 loan with equal monthly payments for
30 years at 9% interest per annum (0.0075% per month)

Month Beginning-of- Total Payment on Payment on
month principal ($) payment ($) interest ($) principal ($)

1 300,000.00 2,413.87 2,250.00 163.87
2 299,836.13 2,413.87 2,248.77 165.10
3 299,671.03 2,413.87 2,247.53 166.34
4 299,504.69 2,413.87 2,246.29 167.58
5 299,337.11 2,413.87 2,245.03 168.84
. . . . .. . . . .. . . . .

358 7,134.33 2,413.87 53.51 2,360.36
359 4,773.97 2,413.87 35.80 2,378.07
360 2,395.90 2,413.87 17.97 2,395.90

Students should be able to work through the figures on this table starting from the upper left-
hand corner, then working to the left, then down. In this particular example, because n is large
(360), use of a computerized spreadsheet will make computations substantially more efficient.

4.11 PERPETUITY MODELS

(Background reading: section 4.9)

As the value of n approaches infinity in the annuity formula, the value of the right-
hand side term in the brackets,

approaches zero. That is, the cash flows associated with the annuity are paid each year
for a period approaching “forever.” Therefore, as n approaches infinity, the value of
the infinite time horizon annuity approaches

(4.19)

The annuity formula discussed in section 4.9 can be derived intuitively by use of 
figure 4.1. First, consider a perpetuity as a series of cash flows beginning at time period
one (one year from now) and extending indefinitely into perpetuity. Consider a second
perpetuity with cash flows beginning in time period n and extending indefinitely into
perpetuity. If an investor is to receive an n-year annuity, the second perpetuity rep-
resents those cash flows from the first perpetuity that he will not receive. Thus, the 
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68 The time value of money

Present value of perpetuity beginning in one year =

nTime 1 ∞

Present value of n-year
annuity: PVA

Present value of perpetuity
beginning in year (n + 1):

(CF/k)
(1 + k)n

CF
k

Figure 4.1 Deriving annuity present value from perpetuity present values. The 
present value of a perpetuity beginning in one year minus the present value of a second
perpetuity beginning in year (n + 1) equals the present value of an n-year annuity. 
Thus, PVA = CF/k − (CF/k) ÷ (1 + k)n = CF/k · [1 − 1/(1 + k)n].

difference between the present values of the first and second perpetuities represents the
value of the annuity that he will receive. Note that the second perpetuity is discounted
a second time, since its cash flows do not begin until year n:

The perpetuity model is useful in the evaluation of a number of investments. Any
investment with an indefinite or perpetual life expectancy can be evaluated with the
perpetuity model. For example, the present value of a stock, if its dividend payments
are projected to be stable, will be equal to the amount of the annual dividend (cash
flow) generated by the stock divided by an appropriate discount rate. In European finan-
cial markets, a number of perpetual bonds have been traded for several centuries. In
many regions in the United States, ground rents (perpetual leases on land) are traded.
The proper evaluation of these and many other investments requires the use of per-
petuity models.

The maximum price an investor would be willing to pay for a perpetual bond gener-
ating an annual cash flow of $200, each discounted at a rate of 5%, can be determined
from equation (4.19):

4.12 SINGLE-STAGE GROWTH MODELS

(Background reading: sections 4.9 and 4.11)

If the cash flow associated with an investment were expected to grow at a constant
annual rate of g, the amount of the cash flow generated by that investment in year t
would be
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CFt = CF1(1 + g)t−1, (4.20)

where CF1 is the cash flow generated by the investment in year one. Thus, if a stock
paying a dividend of $100 in year one were expected to increase its dividend payment
by 10% each year thereafter, the dividend payment in the fourth year would be
$133.10:

CF4 = CF1(1 + 0.10)4 −1

Similarly, the cash flow generated by the investment in the following year (t + 1)
will be

CFt +1 = CF1(1 + g)t.

The stock’s dividend in the fifth year will be $146.41:

CF4+1 = CF1(1 + 0.10)4 = $146.41.

If the stock had an infinite life expectancy (as most stocks might be expected to), and
its dividend payments were discounted at a rate of 13%, the value of the stock would
be determined by

This expression is often called the Gordon Stock Pricing Model. It assumes that the cash
flows (dividends) associated with the stock are known in the first period and will grow
at a constant compound rate in subsequent periods. More generally, this growing per-
petuity expression can be written as follows:

(4.21)

The growing perpetuity expression simply subtracts the growth rate from the dis-
count rate; the growth in cash flows helps to “cover” the time value of money. This
formula for evaluating growing perpetuities can be used only when k > g. If g > K, either
the growth rate or discount rate has probably been calculated improperly. Otherwise,
the investment would have an infinite value (even though the formula would gener-
ate a negative value).

The formula (4.22) for evaluating growing annuities can be derived intuitively from
the growing perpetuity model. In figure 4.2, the difference between the present value
of a growing perpetuity with cash flows beginning in time period n is deducted from
the present value of a perpetuity with cash flows beginning in year one, resulting in
the present value of an n-year growing annuity. Notice that the amount of the cash flow
generated by the growing annuity in year (n + 1) is CF(1 + g)n. This is the first of the
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cash flows not generated by the growing annuity; it is generated after the annuity is
sold or terminated. Because the cash flow is growing at the rate g, the initial amount of
the cash flow generated by the second perpetuity is exceeded by the initial cash flow
of the perpetuity beginning in year one:

(4.22)

Cash flows generated by many investments will grow at the rate of inflation. For
example, consider a project undertaken by a corporation whose cash flow in year one
is expected to be $10,000. If cash flows were expected to grow at the inflation rate of
6% each year until year six, then terminate, the project’s present value would be
$48,320.35, assuming a discount rate of 11%:

Cash flows are generated by this investment through the end of the sixth year. No cash
flow was generated in the seventh year. Verify that the amount of cash flow that would
have been generated by the investment in the seventh year if it had continued to grow
would have been $10,000(1.06)6 = $14,185.

APPLICATION 4.6: STOCK VALUATION MODELS

Consider a stock whose annual dividend next year is projected to be $50. This pay-
ment is expected to grow at an annual rate of 5% in subsequent years. An investor has
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Present value of growing perpetuity beginning in one year:

nTime 1 ∞

Present value of n-year
growing annuity:

PVGA

Present value of growing
perpetuity beginning

in year (n + 1):
[CF1(1 + g)n/(k − g)]

(1 + k)n

CF1

(k − g)

Figure 4.2 Deriving growing annuity present value from growing perpetuity peresent
value. The present value of a growing perpetuity beginning in one year minus the present
value of a second growing perpetuity beginning in year (n + 1) equals the present value of an
n-year growing annuity: CF1/(k − g) ÷ [CF1/(k − g)] − (1 + k)n; PVGA = [CF1/(k − g)][1 ÷ (1 + g)n]
− (1 + k)n.
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determined that the appropriate discount rate for this stock is 10%. The current value
of this stock is $1,000, determined by the growing perpetuity model:

This model is often referred to as the Gordon Stock Pricing Model. It may seem that
this model assumes that the stock will be held by the investor forever. But what if the
investor intends to sell the stock in five years? Its value would be determined by the
sum of the present values of cash flows the investor does expect to receive:

where Pn is the price the investor expects to receive when he sells the stock in year n;
and DIV1 is the dividend payment the investor expects to receive in year one. The 
present value of the dividends the investor expects to receive is $207.53:

The selling price of the stock in year five will be a function of the dividend payments
that the prospective purchaser expects to receive beginning in year six. Thus, in year
five, the prospective purchaser will pay $1,276.28 for the stock, based on his initial
dividend payment of $63.81, determined by the following equations:

DIV6 = DIV1(1 + 0.05)6−1 = $63.81,

stock value in year five = 63.81/(0.10 − 0.05) = $1,276.28.

The present value of the $1,276.28 that the investor will receive when he sells the stock
at the end of the fifth year is $792.47:

The total stock value will be the sum of the present values of the dividends received by
the investor and his cash flows received from the sale of the stock. Thus, the current
value of the stock is $207.53 plus $792.47, or $1,000. This is exactly the same 
sum determined by the growing perpetuity model earlier; therefore, the growing 
perpetuity model can be used to evaluate a stock even when the investor expects to
sell it.
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72 The time value of money

4.13 MULTIPLE-STAGE GROWTH MODELS

(Background reading: section 4.12)

The Gordon Stock Pricing Model may be unrealistic in many scenarios, in that it assumes
that one growth rate applies to the firm’s cash flows and that this growth rate extends
forever. Multiple-stage growth models enable the user to allow for different growth rates
in different periods. For example, a growth company might generate cash flows that
are expected to grow at a high rate in the short term and then decline as the firm matures.
The multistage growth model can accommodate this pattern.

Suppose, for example, that an investor has the opportunity to invest in a stock 
currently selling for $100 per share. The stock is expected to pay a $3 dividend next
year (at the end of year 1). In each subsequent year until the seventh year, the annual
dividend is expected to grow at a rate of 20%. Starting in the eighth year, the annual
dividend will grow at an annual rate of 3% forever. All cash flows are to be discounted
at an annual rate of 10%. Should the stock be purchased at its current price?

The following Two-Stage Growth Model can be used to evaluate this stock:

(4.23)

Note that this model begins with an n-year annuity at growth rate g1 and accommod-
ates the new growth rate g2 in the growing perpetuity that follows. The perpetuity is
discounted a second time because it is deferred; it does not commence payments until
year n. Substituting values from the problem statement yields the following:

Since the $100 purchase price of the stock exceeds its 92.8014519 value, the stock
should not be purchased.

The following represents a Three-Stage Growth Model which is based on a growing
annuity, a deferred growing annuity, and a deferred growing perpetuity:
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There are three stages here, the first ending at time n(1), the second ending at time
n(2), and the third extending into perpetuity. It may be a useful exercise to closely exam-
ine this expression to determine why it is structured in this manner. Try to determine
why the growth rates and discount rates are structured as they are. Be certain to first
be comfortable with the Present-Value Growing Annuity and Perpetuity Models and
the Two-Stage Growth Model.

EXERCISES

4.1. The Ruth Company borrowed $21,000 at an annual interest rate of 9%.
What is the future value of this loan assuming interest is accumulated on
a simple basis?

4.2. The Cobb Company has issued ten million dollars in 10% coupon bonds
maturing in five years. Interest payments on these bonds will be made 
semiannually.

(a) How much are Cobb’s semiannual interest payments?
(b) What will be the total payment made by Cobb on the bonds in each

of the first four years?
(c) What will be the total payment made by Cobb on the bonds in the fifth

year?

4.3. I have the opportunity to deposit $10,000 into my savings account today,
which pays interest at an annual rate of 5.5%, compounded daily. What
will be the ending balance of my account in five years if I make no addi-
tional deposits or withdrawals?

4.4. What would be the future value of the loan in problem 4.1 if interest were
compounded:

(a) annually?
(b) semiannually?
(c) monthly?
(d) daily?
(e) continuously?

4.5. A consumer has the opportunity to deposit $10,000 into his savings
account today, which pays interest at an annual rate of 5.5%, com-
pounded daily. What will be the ending balance of his account in five years
if he makes no additional deposits or withdrawals?
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74 The time value of money

4.6. The Speaker Company has the opportunity to purchase a five-year $1,000
certificate of deposit (CD) paying interest at an annual rate of 12%, com-
pounded annually. The company will not withdraw early any of the
money in its CD account. Will this account have a greater future value than
a five-year $1,000 CD paying an annual interest rate of 10%, compounded
daily?

4.7. The Waner Company needs to set aside a sum of money today for the 
purpose of purchasing, for $10,000, a new machine in three years. Money
used to finance this purchase will be placed in a savings account paying
interest at a rate of 8%. How much money must be placed in this account
now to assure the Waner company $10,000 in three years if interest is 
compounded yearly?

4.8. A given savings account pays interest at an annual rate of 3% com-
pounded quarterly. Find the annual percentage yield (APY) for this account.

4.9.* Assuming no withdrawals or additional deposits, how much time is required
for $1,000 to double if placed in a savings account paying an annual inter-
est rate of 10% if interest were:

(a) computed on a simple basis?
(b) compounded annually?
(c) compounded monthly?
(d) compounded continuously?

4.10. What is the present value of a security promising to pay $10,000 in five
years if its associated discount rate is:

(a) 20%?
(b) 10%?
(c) 1%?
(d) 0%?

4.11. What is the present value of a security to be discounted at a 10% rate promis-
ing to pay $10,000 in:

(a) 20 years?
(b) ten years?
(c) one year?
(d) six months?
(e) 73 days?

4.12. The Gehrig Company is considering an investment that will result in a $2,000
cash flow in one year, a $3,000 cash flow in two years, and a $7,000 cash
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flow in three years. What is the present value of this investment if all cash
flows are to be discounted at an 8% rate? Should Gehrig Company man-
agement be willing to pay $10,000 for this investment?

4.13. The Cramden Company has the opportunity to pay $30,000 for a security
which promises to pay $6,000 in each of the next nine years. Would this
be a wise investment if the appropriate discount rate were:

(a) 5%?
(b) 10%?
(c) 20%?

4.14. The Larsen Company is selling preferred stock which is expected to pay a
$50 annual dividend per share. What is the present value of dividends asso-
ciated with each share of stock if the appropriate discount rate were 8% and
its life expectancy were infinite?

4.15. The Dinkins Company has purchased a machine whose output will result
in a $5,000 cash flow in its first year of operation. This cash flow is projected
to grow at the annual 10% rate of inflation over each of the next ten years.
What will be the cash flow generated by this machine in:

(a) its second year of operation?
(b) its third year of operation?
(c) its fifth year of operation?
(d) its tenth year of operation?

4.16. The Wagner Company is considering the purchase of an asset that will result
in a $5,000 cash flow in its first year of operation. Annual cash flows are
projected to grow at the 10% annual rate of inflation in subsequent years.
The life expectancy of this asset is seven years, and the appropriate discount
rate for all cash flows is 12%. What is the maximum price that Wagner should
be willing to pay for this asset?

4.17. What is the present value of a stock whose $100 dividend payment next
year is projected to grow at an annual rate of 5%? Assume an infinite life
expectancy and a 12% discount rate.

4.18. Which of the following series of cash flows has the highest present value
at a 5% discount rate:

(a) $500,000 now?
(b) $100,000 per year for eight years?
(c) $60,000 per year for 20 years?
(d) $30,000 each year forever?
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4.19. Which of the cash flow series in problem 4.18 has the highest present value
at a 20% discount rate?

4.20. Mr. Sisler has purchased a $200,000 home with $50,000 down and a 
20-year mortgage at a 10% interest rate. What will be the periodic pay-
ment on this mortgage if they are made:

(a) annually?
(b) monthly?

4.21. What discount rate for cash flows in problem 4.13 would render the
Cramden Company indifferent regarding its decision to invest $30,000 for
the nine-year series of $6,000 cash flows? That is, what discount rate will
result in a $30,000 present value for the series?

4.22.* What would be the present value of $10,000 to be received in 20 years if
the appropriate discount rate of 10% were compounded:

(a) annually?
(b) monthly?
(c) daily?
(d) continuously?

4.23. (a) What would be the present value of a 30-year annuity if the $1,000
periodic cash flow were paid monthly? Assume a discount rate of
10% per year.

(b) Should an investor be willing to pay $100,000 for this annuity?
(c)* What would be the highest applicable discount rate for an investor to

be willing to pay $100,000 for this annuity?

4.24. A firm has purchased a piece of equipment for $10,000, which will be
financed by a five-year loan accumulating interest at an annual rate of 10%.
The loan will be amortized over the five-year period with equal annual pay-
ments. What will be the amount of the annual payment?

4.25.* Demonstrate how to derive an expression to determine the present value
of a growing annuity.

4.26.* What would be the present value of a 50-year annuity whose first cash flow
of $5,000 is paid in ten years and whose final (50th) cash flow is paid in
59 years? Assume that the appropriate discount rate is 12% for all cash flows.

4.27. Suppose that an investor has the opportunity to invest in a stock currently
selling for $100 per share. The stock is expected to pay a $1.80 dividend
next year (at the end of year one). In each subsequent year forever, the annual
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dividend is expected to grow at a rate of 4%. All cash flows are to be 
discounted at an annual rate of 6%. Should the stock be purchased at its
current price?

4.28. Suppose that an investor has the opportunity to invest in a stock currently
selling for $100 per share. The stock is expected to pay a $5 dividend next
year (at the end of year one). In each subsequent year until the third year,
the annual dividend is expected to grow at a rate of 15%. Starting in the
fourth year, the annual dividend will grow at an annual rate of 6% until
the sixth year. Starting in the seventh year, dividends will not grow. All
cash flows are to be discounted at an annual rate of 8%. Should the stock
be purchased at its current price?

APPENDIX 4.A TIME VALUE SPREADSHEET
APPLICATIONS

Spreadsheets are very useful for time value calculations, particularly when there are
either a large number of time periods or a large number of potential outcomes. Not are
most time value formulas easy to enter into cells, but the toolbar the top of the Excel
screen should have the Paste Function button ( fx ) which will direct the user to a vari-
ety of time value functions. By left-clicking the Paste Function ( fx ), the user will be
directed to the Paste Function menu. From the Paste Function menu, one can select
the Financial sub-menu. In the Financial sub-menu, scroll down to select the appro-
priate time value function. Pay close attention to the proper format and arguments for
entry. Table A1 below lists a number of time value functions which may be accessed
through the Paste Function menu along with the example and notes.

While the formulas entered into Table A.1 make use of specialized Paste Functions
for Finance, the spreadsheet user can enter his own simple formulas. For example, 
suppose that the user enters a cash flow in cell A1, a discount rate in cell A2 and a
payment or termination period into cell A3. The present value of this cash flow can 
be found with =A1/(1+A2)^A3 or, in the case of an annuity, with =A1*((1/A2)-
(1/(A2*(1+A2)^A3))). Now, enter a deposit amount into cell A1, an interest rate in
cell A2 and a payment date or termination date in cell A3. Future values can be found
with =A1*(1+A2)^n and =A1*((1/A2)-(1/(A2*(1+A2)^A3)))*(1+A2)^n. These for-
mulas can easily be adjusted for growth, in which a value for cell A4 may be inserted
for the growth rate.
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