
C H A P T E R  E I G H T

DIFFERENTIAL CALCULUS

8.1 FUNCTIONS AND LIMITS

(Background reading: sections 2.2 and 3.5)

Most of this book is concerned with the relationships among mathematical variables
and numbers. The natures of these relationships are defined by functions. A function is
a rule that assigns to each number in a set a unique second number. Functions are
generally represented by equations, graphs, and tables. The following example is a
“generic” functional relationship in equation form: y = f (x), which reads “y is a func-
tion of x.” For each value of x, the function assigns a unique value for y. If y increases
as x increases, we say that y is a direct, or increasing, function of x. The following are
examples where y is an increasing function of x:

(a) y = 10x; (b) y = 2x + 1;
(c) y = x; (d) y = 3ex;
(e) y = 5x2 + 3x + 1 (when x > −0.3); (f ) y = 9x3 + 3x2 + 2x + 1.

Functions (a), (b), and (c) are linear; graphs depicting the relationships between x and
y would be represented by lines. Equation (d) represents an exponential function.
Equation (e) is a quadratic function (it is a polynomial of order 2) and equation (f ) is
a cubic function (it is a polynomial of order 3). If y decreases as x increases, we say
that y is a decreasing, or inverse, function of x. The following are examples where y is
a decreasing function of x:

(where x > 0), y = −x + 5,

y = −2x2 − 4x (where x > −1), y = 2e−x,

(where x > 0), y = −5(x2).y
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Now consider a function y = f(x). As x approaches (gets closer to) some value a (with-
out actually equaling a), causing y to approach L, we say that the limit of f (x) as x
approaches a equals L. The limit is expressed as follows:

(8.1)

The limit of f (x) as x approaches a is L. Consider the following examples of limits:

(a) (b)

(c) (d)

(e) (f )

Thus, the limits of functions (a) and (c) are 0; the limit of function (b) is 1/k, the limit
of function (d) is e; the limit of function (e) is ein; and the limit of function (f ) is 2.

APPLICATION 8.1: THE NATURAL LOG
(Background reading: sections 2.5, 2.11, 4.4, 4.5, 

and 8.1 and application 2.7)

The number e is most useful for growth, time value, and probability-based models in
finance. This number e is defined as a limit as follows:

Thus, as m approaches infinity, the value of function (1 + 1/m)m approaches number
e, which is approximated at 2.71828. Notice the likeness of the above limit to a stand-
ard compounded interest formula from section 4.4. The number e can also be derived
as follows:

As n approaches infinity, the value of this function approaches the number e.
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Figure 8.1 Changing slope: y = 3x2.

8.2 SLOPES, DERIVATIVES, MAXIMA, AND MINIMA

(Background reading: section 8.1)

Among the most useful financial applications of differential calculus are finding rates
of change and growth and determining maximum and minimum values for functions.
Let y be a function of x; that is, y = f (x). A change in x may affect a change in y. For
example, if y = 3x, a change in x by one will result in a change in y by 3. Therefore,
the slope of this function is 3. Because the slope of this function does not change as x
changes, this function is said to be linear. Thus, y is a linear function of x. The slope
m of any line is defined as follows:

(8.2)

where x1 − x0 = ∆x does not equal zero. In our example where y = 3x, if x0 = 2 and 
x1 = 4, then y0 = 6 and y1 = 12. We find that ∆x = 2 and ∆y = 6. Clearly, ∆y ÷ ∆x = 3,
the slope of the function. This slope or rate of change in y is constant with respect to
x. Thus, this function can be represented by a line.

Consider a second function: y = 3x2, which is represented by figure 8.1. Clearly, the
slope of the function y in figure 8.1 changes as x changes. Because the slope of func-
tion y is not constant, equation (8.2) cannot be used to determine its slope over a finite
range, except where the change in x approaches zero. Now, we will define h as ∆x as
∆x approaches zero. Thus, h is defined as the limit of ∆x as ∆x approaches zero.

We can use the calculus concept of a derivative to measure rates of change in 
functions or slopes in graphs. When functions have slopes that are continuously
changing, the derivative is used to find an instantaneous rate of change. That is, 
the derivative provides the change in y induced by an infinitesimal change in x. Let y
be given as a function of x. If x were to increase by a small (infinitesimal – that is,
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approaching though never equaling zero) amount h, how much would we expect y to
change? This rate of change is given by the derivative of y with respect to x, which is
defined using the limit function as follows:

(8.3)

Thus, if an infinitesimal value h (that is, a value approaching zero) were to be added
to x, y would change by the derivative of y with respect to x multiplied by the amount
of change in x:

Now, consider a second function y = f (x). The derivative of this function with
respect to x, dy/dx = f ′(x), is itself a function of x. The slope of the curve representing
the function is positive whenever the derivative is positive. Whenever this derivative
is positive, an infinitesimal increase in x will lead to an increase in y by f ′(x) · ∆x. The
slope of the function represented by figure 8.1 is positive throughout (since x > 0 at all
points in the figure). In figure 8.2, the slope is positive to the right of the minimum
point and negative to the left. In figure 8.3, the slope is positive to the left of the 
maximum point and negative to the right. Whenever the derivative is negative, 
an infinitesimal increase in x will lead to a decrease in y. A zero derivative implies that
an infinitesimal change in x will lead to no change in y. A zero derivative may imply
a minimum or maximum value for y, as is the case in figures 8.2 and 8.3. One may
frequently find the minimum or maximum points in a function by determining when
its derivative is equal to zero.

The function f ′(x) representing the derivative (or first derivative) indicates the slope
of the original function f (x). The function representing the derivative of the derivative
f ″(x) (the second derivative) indicates the slope of the first derivative function and the
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Figure 8.2 Concave up function: y = 3x2 − 4x + 5.

QRMC08  9/17/01  4:46 PM  Page 148



y

7

6

5

4

3

2

1

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

x
1.8 2.0

Derivatives of polynomials 149

Figure 8.3 Concave down function: y = −3x2 + 4x + 5.

concavity (change in the slope) of the original function f (x). Notice that the slopes in
figures 8.1 through 8.3 change as x changes. The rate of change in a slope is deter-
mined by the second derivative:

(8.4)

The second derivative f ″(x) of a function is simply the derivative of the first derivative.
The function represented in figure 8.1 has a positive second derivative when x > 0, as
suggested by the fact that it appears concave up, indicating that its slope increases as
x increases. Note that the first derivative of this function is always positive. The func-
tion represented in figure 8.2 has a positive second derivative, as indicated by its
upwards concavity. Thus, the slope of this function is increasing as x increases. The
slope of this function is negative when x is small, is zero when the function is minim-
ized, and becomes positive when x rises above that level which minimizes y. The func-
tion represented in figure 8.3 has a negative second derivative, consistent with the 
downward concavity in figure 8.3. Thus, the slope of this function decreases as x increases.
Its slope is positive when x is small, is zero when the function is maximized, and becomes
negative when x rises above that level which maximizes y.

8.3 DERIVATIVES OF POLYNOMIALS

(Background reading: section 8.2)

The polynomial function is among the most commonly used in financial modeling. The
polynomial function specifies variable y in terms of a coefficient c (or series of coeffi-
cients cj), variable x (or series of variables xj), and an exponent n (or series of exponents
nj). While all the exponents in a polynomial equation will be nonnegative integers, the
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rules that we discuss here will still apply when the exponents assume negative or 
noninteger values. Where there exists a single coefficient, variable, and exponent, the
polynomial function is represented as follows:

y = c · xn. (8.5)

For example, let c = 3 and n = 2. Our polynomial function is written as follows: y = 3x2.
The derivative of y with respect to x in equation (8.5) is the following function:1

= c · n · xn−1. (8.6)

The derivative of y with respect to x is for this polynomial is found by multiplying
the original coefficient c by the original exponent n and subtracting 1 from the ori-
ginal exponent. Taking the derivative of y with respect to x in our example, we obtain
dy/dx = 3 · 2 · x2−1 = 6x. Note that this particular derivative is always positive when
x > 0, implying that the slope of this curve is always positive when x > 0. Consider a
second polynomial with more than one term (m terms in total). In this second case,
there will be one variable x, m coefficients (cj), and m exponents (nj ):

(8.7)

The derivative of such a function y with respect to x is given by

(8.8)

That is, the derivative of equation (8.7) is found by simply taking the derivative of 
each term in y with respect to x and then summing these derivatives. Consider a second
example, a second order (the largest exponent is 2) polynomial function given by 
y = 3x2 − 4x + 5. The derivative of this function with respect to x is dy/dx = 6x − 4.
This function is plotted in figure 8.2. Note that the function is maximized when x = .
Also note that when x = , the slope of the curve equals zero. We can demonstrate
that the derivative equals zero as follows:

6x − 4 = 0,

6x = 4,

x = .2
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1 This rule is derived in appendix 8.A.
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This derivative is positive when x > , zero when x = , and negative when x < . Thus,
when dy/dx > 0, y increases as x increases; when dy/dx < 0, y decreases as x increases;
and when dy/dx = 0, y may be either minimized or maximized. The slopes in figure 8.2
are consistent with these derivatives. When x = , dy/dx = 0 and the value of y = f (x)
is minimized at 3 .

In many instances, derivatives can be used to find minimum and maximum values
of functions. To ensure that we have found a minimum (rather than a maximum), we
determine the second derivative. The second derivative of a function indicates its con-
cavity. A positive second derivative indicates upward concavity, which indicates that
the function f(x) either increases in x at an increasing rate or decreases in x at a decreas-
ing rate. The function depicted in figure 8.2 exhibits positive concavity. A negative sec-
ond derivative indicates downward concavity, which indicates that the function f (x)
either increases in x at a decreasing rate or increases in x at a decreasing rate.

The second derivative is found by taking the derivative of the first derivative. If the
first derivative equals zero and the second derivative is greater than zero, we have a
minimum value for y (the function is concave up). If the first derivative is zero and the
second derivative is less than zero, we have a maximum (the function is concave down).
If the second derivative is zero, we have neither a minimum nor a maximum. The sec-
ond derivative in the above example is given by d2y/dx2 = 6, also written f ″(x) = 6. Since
the second derivative 10 is greater than zero, the function f (x) is concave up and we
have found a minimum value for y. In many cases, more than one “local” minimum
or maximum value will exist.

Consider a third example where y = −3x2 + 4x + 5. The first derivative is dy/dx =
−6x + 4. Setting the first derivative equal to zero, we find our maximum as follows:

−6x + 4 = 0,

−6x = −4,

x = .

We check second order conditions (the second derivative) to ensure that this is a max-
imum. The second derivative is d2y/dx2 = −6. Since −6 is less than zero, the function
f (x) is concave up and we have a maximum at .

APPLICATION 8.2: MARGINAL UTILITY
(Background reading: section 8.3 and application 3.9)

In Application 3.9, we defined a utility of wealth function for a particular individual
as follows:

U = f (W ).

Now, let us consider the following more specific utility function:

U = 1,000W − 0.002W2 for 0 ≤ W < 250,000.
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The curve for this function is plotted in figure 8.4. In the range from W = 0 to 
W = 250,000, utility increases as wealth increases. For example, when wealth 
equals 40,000, utility equals 36,800,000; when wealth equals 50,000, utility equals
45,000,000. Using the polynomial rule, we find the first derivative with respect to W
of the utility function as follows:

f ′(W ) = 1,000 − 0.004W > 0 for 0 ≤ W < 250,000.

This derivative is positive, indicating that utility increases as wealth increases – as long
as wealth remains within the specified range. When wealth equals 40,000, the derivat-
ive of utility with respect to wealth equals 840. This derivative is positive as long as
wealth is between 0 and 250,000.

The second derivative of the utility function is found:

f ″(W ) = −0.004 < 0.

Thus, this utility function is concave down, indicating diminishing marginal utility with
respect to wealth. This implies that rates of increase in utility resulting from increases
in wealth become smaller as investors grow wealthier. That is, an individual derives
smaller increases in utility when wealthier than when with less wealth. Each additional
unit of wealth decreases the level of utility increase resulting from additional wealth
by 0.004.

Downward concavity of a utility of wealth function indicates risk aversion. This is
because potential wealth increases associated with actuarially fair gambles result in
smaller utility changes than potential wealth decreases. This means that a gamble that

152 Differential calculus
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Figure 8.4 Utility of wealth and risk aversion. Utility-of-wealth function for risk-averse
individual: f ′(W) > 0; f ′(W) < 0. For example, Uw = 1,000W − 0.002W2 for 0 < W < 250,000.
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results in zero change in expected wealth reduces expected utility, because potential
lost utility from losing a given amount of wealth exceeds potential the utility gain from
an identical increase in wealth. Investors are risk averse because the “pain” derived
from a possible wealth loss exceeds the satisfaction derived from an equal possible 
wealth gain. Consider a gamble in which the investor assumes a risk where his $40,000
wealth level may either increase to $50,000 or decrease to $30,000. Recall that the
investor’s utility level before the gamble is 36,800,000. Potential utility levels associ-
ated with the gamble are obtained as follows:

U = 1,000 · 50,000 − 0.002 · (50,000)2 = 45,000,000,

U = 1,000 · 30,000 − 0.002 · (30,000)2 = 28,200,000.

The utility gain associated with the potential wealth gain of $50,000 − $40,000 =
$10,000 is 45,000,000 − 36,800,000 = 8,200,000. The utility loss associated with the
potential wealth loss of $40,000 − $30,000 = $10,000 is 36,800,000 − 28,200,000
= 8,400,000. Note that the potential utility loss exceeds the potential utility gain.

APPLICATION 8.3: DURATION AND IMMUNIZATION
(Background reading: sections 4.8, 4.9, 5.4, and 8.3 and

application 4.4)

United States Treasury bonds, notes, and bills are generally regarded to be free of default
risk and to have very low liquidity risk. However, these bonds, particularly those with
longer terms to maturity, are still subject to price fluctuations when they are traded in
secondary markets. The primary sources of these fluctuations are changes in interest
rates offered on new issues. Such interest rate changes frequently have some element
of unpredictability. One should expect that as interest rates on newly issued bonds increase,
values of existing bonds will decrease. Similarly, interest rate decreases affecting new
bond issues will increase the values of bonds which are already outstanding. The dura-
tion model is intends to measure the proportional change in the value of an existing
bond induced by a change in interest rates or yields of new issues.

The simple present-value model is most useful for the valuation of bonds and other
fixed-income instruments. Yields to maturity of priced issues are frequently used as dis-
count rates to value new issues and to value other issues with comparable terms. It is
important for analysts to know how changes in new-issue interest rates or yields will
affect values of other fixed-income instruments. Bond duration measures the propor-
tional price sensitivity of a bond to changes in the market rate of interest (or yields at
which comparable bonds are selling). Consider a two-year 8% coupon Treasury issue
that is currently selling for $982.41. The yield to maturity y of this bond is 9%. Since
default risk and liquidity risk are presumed to be insignificant, interest rate risk is of
primary concern. Assume that this bond’s yield or discount rate is consistent with mar-
ket yields of comparable Treasury issues. Further assume that bonds of all terms to matur-
ity have the same yield and that the market prices all bonds at their present values.
Thus, discount rates k for all bonds equal their yields to maturity y and these yields are
invariant with respect to bond terms to maturity. If market interest rates and yields
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were to rise for new Treasury issues, then the yield of this bond would rise accordingly.
However, since the contractual terms of this bond will not change, the bond’s market
price must drop to accommodate a yield consistent with the market. More generally,
the value of an n-year bond paying interest at a rate of c on face value F is determined
by a present-value model with the yield y of comparable issues serving as the discount
rate k:

(8.9)

Assume that the terms of the bond contract, n, F, and c, are constant. We want to meas-
ure the proportional change in the price of a bond induced by a proportional change
in market interest rates (actually, a proportional change in [1 + y] ). This proportional
change or elasticity may be approximated by the bond’s Macaulay Simple Duration
Formula, as follows:

(8.10)

Equation (8.10) generally provides a reasonably good approximation of the proportional
change in the value of a bond in a market meeting the assumptions described above,
induced by an infinitesimal proportional change in 1 + y. To compute the bond’s sens-
itivity, we first rewrite equation (8.9) in polynomial form (to take derivatives later) and
substitute y for k (since they are assumed to be equal):

(8.11)

We find the derivative of PV with respect to (1 + y):

(8.12)

Equation (8.12) is rewritten

(8.13)

Since the market rate of interest is assumed to equal the bond yield to maturity, the
bond’s price will equal its present value. We multiply both sides of equation (8.14) by
(1 + y) ÷ P0 to maintain consistency with equation (8.10), and obtain the duration 
formula as follows:
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(8.14)

Thus, duration is defined as the proportional price change of a bond induced by an
infinitesimal proportional change in (1 + y) or 1 plus the market rate of interest:

(8.15)

Since the market rate of interest will likely determine the yield to maturity of any bond,
the duration of the bond described above is determined as follows from equation (8.15):

This duration level of −1.925 suggests that the proportional decrease in the value of
this bond would equal 1.925 times the proportional increase in market interest rates.
This duration level also implies that this bond has exactly the same interest rate sens-
itivity as a pure discount bond (a bond making no coupon payments, also known as a
zero coupon bond) which matures in 1.925 years.

Application of the Simple Macaulay Duration model does require several important
assumptions, some of which were described above. The accuracy of the model will be
impaired by violations in these assumptions. First, the model assumes that yields are
invariant with respect to maturities of bonds; that is, the yield curve is flat. Second, the
model assumes that the investor’s reinvestment rate for coupon payments will be iden-
tical to the bond’s yield to maturity. Finally, any change in interest rates will be
infinitesimal and will also be invariant with respect to time.

In chapter 7, we discussed bond portfolio dedication, which is concerned with
exactly matching payouts required to satisfy liabilities with cash flows to be derived
from bond portfolios. This process assumes that the portfolio is not adjusted by adding
or selling bonds over time and that cash flows associated with liabilities will remain as
originally anticipated. With shifting interest rates over time, these assumptions will not
hold for many institutions. Alternatively, one may hedge fixed income portfolio risk by
using immunization strategies, which are concerned with matching the present values
of asset portfolios with the present values of cash flows associated with future liabilit-
ies. In particular, immunization strategies are primarily concerned with matching the
duration of the asset side of the institution with the duration of the liability side of the
portfolio. If institutional asset and liability durations are matched, it is expected that
the net fund value (the fund’s equity or surplus) will not be affected by a shift in inter-
est rates. Thus, overall fund risk is minimized as fund asset and liability value changes
offset each other. This simple immunization strategy requires the same assumptions
as the Simple Duration Model:
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1 Changes in 1 + y are infinitesimal.
2 The yield curve is flat (yields do not vary over terms to maturity).
3 All yields change by the same amount, regardless of term to maturity.
4 Only interest rate risk is significant.

APPLICATION 8.4: PORTFOLIO RISK AND DIVERSIFICATION
(Background reading: sections 6.1, 6.4, 6.5 and 8.2)

Differential calculus can be used to demonstrate that the risk of a portfolio decreases
as the number of securities in the portfolio increases. First, in section 6.1, we defined
portfolio variance as follows:

(A)

We will argue here that, as n increases, σ 2
p decreases. For the sake of simplicity, we will

assume the following:

1 The portfolio is equally weighted in n securities; that is, wi = wj = 1/n for each 
security.

2 All securities have the same variance, σ 2
i.

3 Each security has the same covariance σi,j with every other security. This covari-
ance will be equal to the average covariance between pairs of securities.

4 Returns on component securities are not perfectly correlated.

Now we rewrite equation (A), substituting 1/n for wi and wj:

(B)

By definition, ∑n
i=1(1/n)σ i

2 is the mean of the security variances. Thus, the right-side term
following the “+” is the mean security variance divided by n. There will be a total of
n(n − 1) covariance terms. The average covariance between pairs of securities is written

(C)

Since the average covariance term will be added n − 1 times, we rewrite portfolio vari-
ance as follows:
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= Fi, j − n−1Fi, j + n−1F 2
i = Fi, j + n−1(F 2

i − Fi, j). (D)

To demonstrate that portfolio variance decreases as n (the number of securities)
increases, we simply show that the derivative of σ 2

p with respect to n is negative:

= −n−2(F 2
i − Fi,j) < 0, (E)

which will be true whenever the average security variance exceeds the average covari-
ance between different securities. This must hold whenever the correlation coefficient
between security returns is less than one.

We can see from the final part of equation (D) that as the number of securities in the
portfolio approaches infinity, the portfolio’s risk approaches the average covariance be-
tween pairs of securities. Individual security variances are insignificant except to the extent
that they affect covariances. Thus, only covariance is significant for large, well-diversified
portfolios. If security returns are entirely independent (σij = 0), portfolio risk approaches
zero as the number of securities included in the portfolio approaches infinity.

8.4 PARTIAL AND TOTAL DERIVATIVES

(Background reading: section 8.3)

Thus far, we have focused on univariate functions, where a dependent variable y is
expressed as a function of a single independent variable x. A multivariate function 
is expressed as a dependent variable y and a series of independent variables (e.g., 
y = f [x1, x2] ). The partial derivative (e.g., ∂y/∂x1) of a function expresses the rate of
change in the dependent variable induced by change in one of its independent vari-
ables, while holding other variables constant. The following represents a multivariate
function and its relevant partial derivatives:

y = 10x4
1 + 3x3

2 + 2x2
1x2,

= 40x3
1 + 4x1x2,

= 9x2
2 + 2x2

1.

Finance practitioners frequently deal with changes in the dependent variable induced
by simultaneous changes in independent variables. One may use the total derivative
dy to indicate changes in the dependent variable y induced by changes in one or more
of n independent variables xi:
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In the above example, the total derivative would be determined as follows:

= (40x3
1 + 4x1x2)dx1 + (9x2

2 + 2x2
1)dx2.

This total derivative dy is expressed as a function of derivatives of y with respect to each
of the independent variables xi and infinitesimal changes in each of these independent
variables.

8.5 THE CHAIN RULE, PRODUCT RULE, 
AND QUOTIENT RULE

(Background reading: sections 8.3 and 8.4)

Each of the functions discussed in section 8.3 are written in polynomial form. Many
functions are not or cannot be written in this manner. Other rules must be derived to
find derivatives for these functions. The chain rule may be used to find derivatives for
some of them. For example, consider the following function:

y = 7(5 + 3x)2.

Although this function can be written in polynomial form (y = 63x2 + 210x + 175; its
derivative using the polynomial rule is 126x + 210), we will apply the chain rule to
find its derivative. The first step here in applying the chain rule is to define a func-
tion u such that u = (5 + 3x). Now we write y as y = 7u2. Also note that du/dx = 3 and
dy/du = 14u. The chain rule is quite simple, although it does have useful and powerful
implications:

(8.16)

That is, if y can be written as a function of function u, which itself is a function x, then
the derivative of y with respect to x equals the derivative of y with respect to function
u multiplied by the derivative of function u with respect to x. In our example, we find
the derivative of y with respect to x as follows:

= 7 · 2 · (5 + 3x) 1 · 3 = 14(5 + 3x) · 3 = 210 + 126x,

c n u n − 1 .

In the calculations above, c · n · un−1 = dy/du and 3 is du/dx.
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Chain rule, product rule, quotient rule 159

Another highly useful tool from calculus is the product rule, which may be applied
to a function such as y = u · v. Consider the function (3x + 5)(7x + 4), where function
u is 3x + 5 and function v is 7x + 4. The product rule, defined as follows, may be applied
to find the derivative of function y, where function y equals function u times function
v (y = u · v):

(8.17)

In our example, the derivative of y with respect to x may be found as follows:

= 3(7x + 4) + 7(3x + 5) = 42x + 47,

v u.

Another highly useful tool from calculus is the quotient rule, which may be applied
to a function such as y = u ÷ v. Consider the function y = (3x + 5)/(7x + 4). Again,
define a function u (the numerator) as 3x + 5 and a function v (the denominator) as
7x + 4. The quotient rule, defined as follows, may be applied to find the derivative of
function y:

(8.18)

The quotient rule states that the derivative of y with respect to x equals the derivative
of the numerator with respect to x times the denominator minus the derivative of the
denominator with respect to x times the numerator all divided by the denominator
squared. Thus, the derivative of y with respect to x is found as follows:

APPLICATION 8.5: PLOTTING THE CAPITAL MARKET LINE
(Background reading: sections 6.4, 7.4, and 8.5)

In section 6.4, we discussed the addition of securities with varying correlation coeffi-
cients to a portfolio and the impact of these additional securities on the risk and effi-
ciency of that portfolio. More efficient combinations of securities can reduce portfolio
risk without decreasing expected portfolio returns. As we add securities to a portfolio,
the fact that they are not perfectly correlated with other securities in that portfolio will
lead to reductions in portfolio risk and increases in portfolio efficiency.
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Portfolio efficiency improves when portfolio risk is reduced without corresponding
reductions in portfolio expected return. In this application, we are concerned with obtain-
ing portfolio weights for the most efficient combinations of assets available in the eco-
nomy. We will map out the most efficient combinations of securities at varying expected
return levels. These most efficient portfolio combinations will be those which have the
lowest risk of any potential portfolio with the same expected return. The set of port-
folios which have the lowest levels of risk given their expected return levels have
risk/expected returns lying on the Efficient Frontier. The Efficient Frontier represents
the risk–return combinations (in standard deviation–expected-return space) of this set
of most efficient portfolios available in the market. It contains the risk–return coordin-
ates of each portfolio that minimizes risk given an expected portfolio return level. Similarly,
the Efficient Frontier contains the risk–return coordinates of each portfolio that max-
imizes return given a risk level.

In any market with more than one security, there are infinitely many ways to com-
bine those securities into portfolios. While investors cannot affect the characteristics
(return, risk, and covariances) of the individual securities in which they invest, they
are able to control portfolio weights. Investors should select securities and assign them
weights in their personal portfolios such that the portfolios are as efficient as possible.

Each investor in the market intends to minimize risk by selecting each of the secur-
ities available in the market with the most appropriate portfolio weightings. Each
security is considered for each investor’s portfolio, with weights greater than zero (the
security is purchased), equal to zero (the security is left out of the portfolio), or less than
zero (the security is sold short).

Suppose that an investor is able to invest in some combination of risky assets
(stocks) and a riskless asset (bond). Any portfolio consisting of a portfolio of risky assets
and a risk-free asset will have an expected return and standard deviation combination
lying on a line as in figure 8.5. This line represents the portfolio possibilities frontier

160 Differential calculus

Figure 8.5 Combining a portfolio of risky assets with the riskless asset.
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Chain rule, product rule, quotient rule 161

for the combination of risky assets and the riskless asset. Consider a portfolio of risky
assets with an expected return equal to 0.10 and a standard deviation of returns equal
to 0.20. Suppose that this portfolio of risky assets is to be combined with a riskless asset
with a return of 5%. The expected return and standard deviation combination of this
resultant portfolio will be determined by the portfolio weights that the investor asso-
ciates with the portfolio of risky assets (wR) and the riskless asset (wf) :

E[Rp] = wR · 0.10 + wf · 0.05, (A)

(B)

(C)

σp = wR · σR. (D)

By rewriting equation (D) as wR = σp ÷ σR, and substituting it into equation (A) for wR,
we find that the expected return of a portfolio combining risky assets and the riskless
asset is a linear function of the return standard deviation of the portfolio of risky assets
as follows:

(E)

(F)

(G)

More generally, equation (G) can be written as follows:

(8.19)

Defining Θp as {E[Rp] − rf} ÷ σR, we obtain the linear relationship between portfolio
expected return and standard deviation as follows:

Theta (Θp) is the slope of the portfolio possibilities frontier depicted in figure 8.5. If
there is a riskless asset in the economy, all of the most efficient portfolios will have a
risk–return combination lying on a portfolio possibilities frontier known as the Capital
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Market Line. The Capital Market Line is the portfolio possibilities frontier with the great-
est slope. The investor’s objective is to choose that portfolio of risky assets enabling him
to maximize the slope of this line; that is, the investor should pick that portfolio with
the largest possible Θp as defined by:

(8.20)

Consider an investor who has the opportunity to combine any one of an infinity 
of portfolios with the riskless asset. However, only one of these portfolios (if none are
perfectly correlated) can be used to comprise the Capital Market Line. Hence, the
investor’s portfolio objective is to select portfolio weights wi such that Θp is maximized:

This portfolio that maximizes Θp is known as the market portfolio of risky assets. Any
combination of the market portfolio and the riskless asset will lie on the Capital Market
Line and will dominate (be more efficient than) any other asset or portfolio with equal
expected return. Thus, any investor should invest in some combination of this domin-
ant portfolio of risky assets (stocks) and the riskless asset (bonds). The investor’s first
problem is to select the portfolio weights which comprise the market portfolio of
stocks.

Suppose that the investor can invest in any combination of two risky securities 1
and 2. The expected returns, standard deviations, and covariance are given as follows:

E[R1] = 0.11, σ1 = 0.20,

E[R2] = 0.15, σ2 = 0.40, σ1,2 = −0.01.

The Treasury bill (riskless) rate in this economy is 0.06. We will now derive the set of
equations that the investor needs to find his optimal portfolio of riskless assets.

Since the investor’s objective is to select a portfolio of the two risky assets such that
the slope of the Capital Market Line is maximized, we will select stock portfolio weights
such that Θp is maximized. To accomplish this, we will find partial derivatives of Θp

with respect to weights of each of each of the two stocks, set the partial derivatives equal
to zero and solve for the weight values w1 and w2. First, we write Θp for the simple two-
stock portfolio as follows:
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Next, we use the quotient rule to begin the process of finding the partial derivatives of
Θp with respect to w1 and w2:

(B1)

(B2)

Before completing this process, we use the chain rule to find the partial derivatives ∂σp/∂w1

and ∂σp/∂w1 (from the denominator of equation (A)):

(C1)

(C2)

We can find from equation (A) that the derivative of (E[Rp] − rf ) with respect to wi equals
(E[Ri] − rf ). Next, we substitute our results of equations (C1) and (C2) into equations
(B1) and (B2), to obtain:

(D1)

(D2)

Because the derivatives from equations (D1) and (D2) are both set equal to zero, we
may multiply the numerator of each by σp and maintain the equalities. Next, we rewrite
the equations as follows:

(E1)

(E2)
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To continue the process of simplification, define the variable zi to be wi(E[Rp] − rf )/σ 2
p

and rewrite equations (E1) and (E2) as follows:

E[R1] − rf = z1σ 2
1 + z2σ1,2,

E[R2] − rf = z1σ2,1 + z2σ 2
2.

Substituting numerical values from our example, we have

0.11 − 0.06 = 0.22z1 − 0.01z2,

0.15 − 0.06 = 0.01z1 + 0.42z2,

or

0.05 = 0.04z1 − 0.01z2,

0.09 = −0.01z1 + 0.16z2.

Solving the above simultaneously yields z1 = 1.41 and z2 = 0.65. Since E[Rp], rf, and σp

are the same for both z1 and z2, the ratio between w1 and w2 must be the same as the
ratio between z1 and z2. Therefore, portfolio weights w1 and w2 are determined as follows:

w1 = z1 ÷ (z1 + z2) = 0.68,

w2 = z2 ÷ (z1 + z2) = 0.32.

Thus, 68% and 32% of this investor’s wealth will be invested in securities 1 and 2. This
represents the market portfolio (m) to the investor and is the most efficient combina-
tion of risky assets given the prevailing riskless rate of return at 6%. The return and
risk levels of the portfolio (m) with two risky stocks are simply

E[Rm] = 0.68 · 0.11 + 0.32 · 0.15 = 0.12,

σm = [0.682 · 0.04 + 0.322 · 0.16 + 2 · 0.68 · 0.32 · (−0.01)]0.5 = 0.17.

The equation for the Capital Market Line is as follows:

These results enable the investor to determine weightings for his optimal portfolio
of risky assets (stocks). The investor allocates funds to this most efficient portfolio of
risky assets and bonds based on his own attitudes toward return and risk. Finally, this
derivation can easily be extended to include as many securities as exist in the market.
Matrix mathematics such as the methodologies discussed in section 7.4 may simplify
computations of larger systems.
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8.6 LOGARITHMIC AND EXPONENTIAL FUNCTIONS

(Background reading: sections 2.5, 2.6, 8.1, 
and 8.2)

Logarithmic and exponential functions and derivatives of these functions are most use-
ful in finance for modeling growth. Consider the following function:

f (x) = etx.

The derivative of this exponential function is found as follows:

It is easy to demonstrate (or verify on a hand calculator) that as h approaches zero, 
(eth − 1)/h will approach t. Thus, the derivative of the exponential function is found as
follows:

(8.21)

Thus, the derivative of e0.05x with respect to x is simply 0.05e0.05x. If we accept the 
special case of equation (8.21) that dex/dx = ex, the following more general expression
for the derivative of an exponential function can be verified using the chain rule:

(8.22)

From equation (8.22), we can derive a function for the derivative of a logarithmic
function y = ln(x). First, by definition, eln(x) = x, implying that deln(x)/dx = 1. Now, con-
sider the following special case of equation (8.22):

This equation is written

which implies

(8.23)
  
 

ln( )
  .

d
d

x
x x

=
1

  
1   

ln( )
  ,= ⋅

d
d

x
x

x

  

de
d

d
d

e
ln( )

ln( )  
ln( )

.
x

x

x
x

x
=

  

de
d

e
g x

g x

x
g x

( )
( )  ( ) .= ′

  

de
d

e
tx

tx

x
t  .=

  
f x

h hh

t x h tx
tx

h

th

′
→ →

( )  lim 
  

  lim 
  

.
( )

=
−

=
−+

0 0

1e e
e

e

QRMC08  9/17/01  4:46 PM  Page 165



166 Differential calculus

8.7 TAYLOR SERIES EXPANSIONS

(Background reading: section 8.3)

The derivative was used in section 8.3 to determine the rate of change in f (x) induced
by a change in x. Unfortunately, when f (x) is not linear in x, the estimates of change
based on this derivative is normally accurate only for infinitesimal changes in x. The
Taylor series approximation or expansion may be used for finite changes in x. Taylor
series expansions are frequently used to evaluate a function f (x1) at a point x1 that dif-
fers from a starting point x0 at which f(x0) has already been evaluated. That is, the Taylor
series may be used to approximate a rate of change in f (x) induced by a change in x.
An nth order Taylor series is defined as follows for a function f (x) that is differentiable
n times:

f (x0 + ∆x) ≈ f (x0) + f ′(x0) · ∆x + · f ″(x0) · (∆x)2

+ · f ′″(x0) · (∆x)3 + . . . + · f n(x0) · (∆x)n. (8.24)

For example, consider the function y = 10x3. Let x0 = 2, such that we have f (x0) = 80,
f ′(x0) = 30x0

2 = 120, f ″(x0) = 60x0 = 120, and f ′″(x0) = 60, and all higher order derivat-
ives are equal to zero. Now, suppose that we wish to increase x by ∆x = 3 to x1 = 5.
The Taylor series expansion may be used to evaluate x1 as follows:

f (2 + 3) = f (2) + f ′(2) · 3 + · f ″(2) · 32 + · f ′″(2) · 33

= 80 + 120 · 3 + · 120 · 9 + · 60 · 27 = 80 + 360 + 540 + 270 = 1,250.

This third order expansion provided an exact solution for f (5) = 1,250. This third
order expansion provided an exact solution for f (x) because f (x) was differentiable only
three times (fourth and higher derivatives equal zero) and our approximation used all
three nonzero derivatives. In many cases, we will be able to obtain reasonable approx-
imations, although not precise solutions, where not all nonzero derivatives are used.
In this example, first order approximation results in f (5) ≈ 440 and the second order
approximation results in f (5) ≈ 980:

f (2 + 3) ≈ f (2) + f ′(2) · 3 = 80 + 120 · 3 = 80 + 360 = 440,

f (2 + 3) ≈ f (2) + f ′(2) · 3 + · f ″(2) · 32

= 80 + 120 · 3 + · 120 · 9 = 80 + 360 + 540 = 980.

Note that the second order approximation based on first and second derivatives is 
superior to the first order approximation based only on the first derivative. Generally,
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Taylor series approximations will improve as order of the approximating equation
increases (as n increases). If the equation is differentiable n or fewer times, the Taylor
series approximation of the nth order will be precise.

APPLICATION 8.6: CONVEXITY AND IMMUNIZATION
(Background reading: section 8.7 and application 8.4)

The duration model in application 8.4 was used to approximate the change in a
bond’s value resulting from a change in interest rates 1 + y. However, the accuracy of
the duration model is reduced when interest rates change by finite amounts. This is
important because interest rate changes can be quite sudden and quite large. Duration
may be regarded as yielding a first order approximation (it only uses the first derivat-
ive) of the change in the value of a bond resulting from a change in interest rates. As
we saw above, a second order approximation will probably yield superior estimates to
the first order approximation. Convexity is determined by the second derivative of the
bond’s value with respect to 1 + y. Recall that the first derivative of the bond’s price
with respect to 1 + y is

(8.25)

We find the second derivative by solving for the derivative of equation (8.25) as 
follows:

(8.26)

This second derivative divided by the bond’s price as defined as the bond’s con-
vexity. Thus, convexity is the second derivative of P0 with respect to 1 + y divided by
P0. The two derivatives given by equations (8.25) and (8.26) may be used in a Taylor
series expansion to approximate new bond prices affected by changes in interest rates:

P1 ≈ P0 + f (1 + y0) · [∆(1 + y)] + · f ″(1 + y0) · [∆(1 + y)]2,

(8.27)+
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168 Differential calculus

Consider an example involving a three-year 6% $1,000-face-value coupon bond cur-
rently selling at par (face value). The yield to maturity of this bond is computed to be
y0 = 0.06. The first derivative of the bond’s market value with respect to 1 + y at y0 =
0.06 is found by equation (8.25) to be −3,003.39 (duration is −3.00339 · 1.06 ÷ 1,000
= −2.83339); the second derivative is found from equation (8.26) to be 9,891.03 (con-
vexity is 9,891.03 ÷ 1,000 = 9.89103). If yields on comparable bonds were to increase
from 0.06 to 0.09, the actual value of this bond would decrease to 924.06, as deter-
mined from a standard present-value model. If we were to use a first order series (the
duration model) to estimate the new value of the bond, our approximation is 919.81.
This approximation is not likely to be acceptable for most purposes. If we use the sec-
ond order series (the convexity model), our approximation is 924.26:

924.26 = 1,000 − 2,83339 · 0.03 · + · 1,000 · 9.89103 · 0.032. (8.28)

While the estimate provided by this second order approximation is not precise, it does
yield a new bond value that is closer to the bond’s actual new value as determined by
the present-value model. Therefore, the duration and immunization (application 8.4
above) applications can be substantially improved by using second order approxima-
tions of bond prices. Although duration and convexity provide only approximations of
bond prices after interest rate shifts, their real value is in their application in bond risk
management. The fixed income manager intending to hedge portfolio risk should
match the convexities of fund assets and liabilities as well as the durations of fund assets
and liabilities. This combination provides for a superior hedge.

8.8 THE METHOD OF LAGRANGE MULTIPLIERS

(Background reading: sections 7.4 and 8.4)

Differential calculus is particularly useful for determining minimums or maximums of
functions of many types. Many optimization problems require constraints or limitations
on functions to be minimized or maximized. For example, a portfolio manager may struc-
ture security weights in a portfolio so as to minimize portfolio risk. The most efficient
portfolio minimizes risk at a given expected return level. The method of Lagrange multi-
pliers enables function optimization subject to constraints. This method of Lagrange
multipliers supplements the original function to be optimized by adding one term for
each constraint to be considered. This extra term for each constraint is the product 
of a function of the constraint and a Lagrange multiplier λ. The method of Lagrange
multipliers is most useful for nonlinear functions with more than one independent 
variable. For example, suppose that we wish to minimize the function y = 5x2 + 3z2

+ 6xz subject to the constraint that 3x + 2z = 50. This problem may be written as 
follows:

OBJ: Min y = 5x2 − 3z2 + 6xz

s.t.: 3x + 2z = 50.

1
2

 

1 000
1 0 06

,
  .+
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The method of Lagrange multipliers 169

This problem statement reads. “Objective function: Minimize y = 5x2 − 12z2 + 6xz
subject to 3x + 2z = 50.” The Lagrange function combines the original function and
the constraints as follows:

L = 5x2 + 12z2 + 6xz + λ(50 − 3x − 2z).

Notice that we have added a second function to the original function to be minimized.
This second function is the product of a Lagrange multiplier λ and the constraint. This
product will have a numerical value equal to zero. The Lagrange multiplier by itself
may be interpreted as the change in y that will be induced by a change in the con-
straint numerical value (in this case, 50); that is, λ is a sensitivity variable. If the 
constraint is not binding, λ will equal zero. If the constraint is binding in this example,
3x + 2z will equal 50. Since either the contents within the parentheses or the
Lagrange multiplier will equal zero, the numerical value of the function that we have
added to our original function to be optimized will be zero. Although the numerical
value of our original function is unchanged by the supplement representing the con-
straint, its derivatives will be affected by the constraint.

We solve our optimization problem by setting partial derivatives equal to zero. That
is, we set partial derivatives of function L with respect to each of our variables x, z, and
λ equal to zero. This process is known as finding first order conditions:

= 10x + 6z − 3λ = 0,

= 24z + 6x − 2λ = 0,

= 50 − 3x − 2z = 0.

We rewrite this system as follows:

10x + 6z − 3λ = 0,

6x + 24z − 2λ = 0,

−3x − 2z + 0λ = −50.

This system is solved in matrix format as follows:

C · x = s.

10 6 3

6 24 2

3 2 0

0

0

50

−
−

− −
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170 Differential calculus

We find the inverse for the coefficients matrix then solve for security weights and our
Lagrange multiplier as follows:

C−1 · s = x.

We find that x = 16.30435, z = 0.543478, and λ = 55.43478. Thus, the minimum
value for y subject to the constraint is 1,279.537. This constraint is binding since λ is
nonzero. Note that 3x + 2z = 50.

The term λ may be considered to be a sensitivity coefficient. This sensitivity
coefficient indicates the change in y that would result from a change in the constraint
on 3x + 2z. If, for example, we were to increase the constraint by 1 from 50 to 51, the
value of y would increase by approximately 55.43478, since this is the value of λ. The
accuracy of this approximation declines as the change in the constraint increases.

APPLICATION 8.7: OPTIMAL PORTFOLIO SELECTION
(Background reading: sections 6.3, 6.4, and 8.7)

One important application of Lagrange optimization in finance is in specifying weights
of most efficient portfolios. Suppose that an investor has the opportunity to construct
a portfolio consisting of three assets whose characteristics are specified as follows:

Asset E[R] σ

A 0.06 0.20
B 0.09 0.30
C 0.12 0.40

ρA,B = ρA,C = ρB,C = 0.4

Suppose that the investor intends to invest $1,000,000 into a portfolio that enables
him to minimize his risk level. The investor requires an expected portfolio return of at
least 10% and the weights of his portfolio should sum to 1. We need to determine how
much the investor should place into each of the three securities. First, we use the data
given above to compute relevant variances and covariances for the individual securit-
ies and pairs. The portfolio objective function and constraints are given as follows:

OBJ: Min σ 2
p = 0.04w2

A + 0.09w2
B + 0.16w2

C + 0.048wAwB + 0.064wAwC + 0.096wBwC

s.t.: 0.06wA + 0.09wB + 0.12wC = 0.10,

wA + wB + wC = 1.

0 021739 0 03261 0 32609

0 03261 0 048913 0 01087

0 32609 0 01087 1 1087

0

0

50

. . .

. . .

. . .
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− −
− −
− − −
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The method of Lagrange multipliers 171

The Lagrange function is constructed as follows:

L = 0.04w2
A + 0.09w2

B + 0.16w2
C + 0.048wAwB + 0.064wAwC + 0.096wBwC

+ λ1(0.10 − 0.06wA − 0.09wB − 0.12wC) + λ2(1 − wA − wB − wC).

Our first order conditions are given by the following:

= 0.08wA + 0.048wB + 0.064wC − 0.06λ1 − λ2 = 0,

= 0.18wB + 0.048wA + 0.096wC − 0.09λ1 − λ2 = 0,

= 0.32wC + 0.064wA + 0.096wB − 0.12λ1 − λ2 = 0,

= 0.10 − 0.06wA − 0.09wB − 0.12wC = 0,

= 1 − 1wA − 1wB − 1wC = 0.

This system is written in matrix format as follows:

C · x = S.

We now invert matrix C and then solve for vector x:

We determine the following weights: wA = 0.119, wB = 0.429, and wC = 0.452. The
two Lagrange multipliers are λ1 = 2.24 and λ2 = −0.075. The expected portfolio return
and standard deviation are 0.10 and 0.273, respectively. The portfolio variance is 0.074.
Since the first Lagrange multiplier is 2.24, an increase by 0.01 in the return constraint

  

1 488095 2 97619 1 488095 20 2381 2 14286

2 97619 5 952381 2 97619 7 14286 0 285714

1 488095 2 97619 1 488095 13 0952 0 875143

20 2381 7 14286 13 0952 66 9841 4 457143

2 14286 0 285714 0 857143 4 457143 0 37029
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would change portfolio weights, leading to an increase in portfolio variance of approx-
imately 0.0224. We would find the actual new portfolio variance by inserting 0.11
into the return constraint of the Lagrange function. In this case, we see that the actual
revised portfolio variance increases to 0.100.

EXERCISES

8.1. Solve the following for y′:

8.2. Find derivatives of y with respect to x for each of the following:

(a) y = 5; (d) y = 10x0.5 − 11x3;
(b) y = 7x3; (e) y = 5x1/5;
(c) y = 2x4 + 5x3; (f ) y = 2/x2 + 2/3x1/2 + 3x−1/5 + 1/x.

8.3. Find second derivatives of y with respect to x for each function in problem
8.2.

8.4. Identify those functions that have finite maximum values for y. For these
functions, what values for x maximize y?

(a) y = 15x2 + 12; (d) y = 2x3 − 6x2 + x − 12;
(b) y = 20x; (e) y = 12x3;
(c) y = −3x2 + 6x; (f ) y = 3 + x2 + 10x.

8.5. Identify those functions that have finite minimum values for y. For these
functions, what values for x minimize y?

(a) y = 15x2 + 12; (d) y = x3 − 3x2 + 2x − 21;
(b) y = 6x; (e) y = 12x3;
(c) y = 3x2 + 6x; (f ) y = 13 − x2 + 8x.

8.6. Find the durations for the following pure discount (zero coupon) bonds:

(a) A $1,000-face-value bond maturing in one year. The bond is currently
selling for $900.

(b) A $1,000-face-value bond maturing in two years. The bond is cur-
rently selling for $800.

(c) A $2,000-face-value bond maturing in three years. The bond is cur-
rently selling for $1,400.

  
y

x h x
hh

′
→

  lim 
(   )   

.=
+ −

0

2 27 7
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Exercises 173

(d) A portfolio consisting of one of each of the three bonds listed in parts
(a), (b), and (c) of this problem.

(e) A portfolio consisting of $100,800 in each of the three bonds listed in
parts (a), (b), and (c) of this problem.

8.7. Find the duration of each of the following $1,000-face-value coupon
bonds assuming that coupon payments are made annually:

(a) a-three year 7% bond currently selling for $950; 
(b) a-three year 12% bond currently selling for $1,040;
(c) a-four year 10% bond currently selling for $900;
(d) a-four year 10% bond currently selling for $800.

8.8. Based on duration computations, what would happen to the prices of 
each of the bonds in problem 8.7 if market interest rates (r = ytm) were to
increase by 1%?

8.9. What is the duration of a portfolio containing one of each of the bonds listed
in problem 8.7?

8.10. Consider each of the following functions:

(a) y = 5x; (d) y = 5x3 + 10z2 + 7xz;
(b) y = 5x2 + 10z; (e) y = 12x3z5 + 3xz2;
(c) y = 2x7 + 8q5; (f ) y = ∑n

i=1nxiz2.

(i) For each of the functions (a)–(f ) above, find partial derivatives for y
with respect to x.

(ii) For each of the functions (a)–(f ) above, find partial derivatives for y
with respect to z.

8.11. Find derivatives for y with respect to x for each of the following:

(a) y = (4x + 2)3; (d) y = (1.5x − 4)3(2.5x − 3.5)4;
(b) y = (3x2 + 8)1/2; (e) y = 25/x2;
(c) y = 6x(4x3 + 5x2 + 3); (f ) y = (6x − 16) ÷ (10x − 14).

8.12. Investors have the opportunity to invest in any combination of the 5% risk-
less asset and the two risky securities given in the table below:

i E[Ri] σi σ1,i σ2,i σ3,i

1 0.15 0.50 0.25 0.05 0
2 0.08 0.40 0.05 0.16 0
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(a) What are the security weights for the optimal (market) portfolio of risky
assets?

(b) What are the market portfolio expected return and standard deviation
levels?

8.13. Investors have the opportunity to invest in any combination of the 5% risk-
less asset and the three risky securities given in the table below:

i E[Ri] σi σ1,i σ2,i σ3,i

1 0.15 0.50 0.25 0.05 0.04
2 0.08 0.40 0.05 0.16 0.03
3 0.06 0.30 0.04 0.16 0.09

(a) What are the security weights for the optimal (market) portfolio of risky
assets?

(b) What are the market portfolio expected return and standard deviation
levels?

8.14.* An investor has the opportunity to invest in a portfolio combining the 
following two risky stocks:

Security Expected return Standard deviation

A 0.08 0.30 COV(A,B) = 0
B 0.12 0.60

The investor can borrow money at a rate of 6%, lend money at 4%, and
has $5,000,000 to invest. The investor intends to minimize the risk of her
portfolio, but requires an expected return of 18%. How much money
should she borrow or lend? How much should she invest in each of the two
stocks?

8.15. Differentiate each of the following with respect to x:

(a) y = e0.05x; (c) y = 5 ln(x);
(b) y = (ex)/x; (d) y = ex ln(x).

8.16. Find durations and convexities for each of the following bonds:

(a) a 6% three-year bond selling for $1,020;
(b) a 9% four-year bond selling for $1,100.

174 Differential calculus
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Exercises 175

8.17. For each of the bonds listed in problem 8.16 above, complete the follow-
ing, assuming that all interest rates (yields) change to 8%:

(a) Use the duration (first order) approximation models to estimate bond
value changes induced by changes in interest rates (yields) to 8%.

(b) Use the convexity (second order) approximation models to estimate bond
value changes induced by changes in interest rates (yields) to 8%.

(c) Find the present values of each of the bonds after yields (cash flow 
discount rates) change to 8%.

8.18. Our objective is to find the value for x that enables us to maximize the func-
tion y = 50x2 − 10x subject to the constraint that 0.1x = 100. Set up and
solve a Lagrange function for this problem.

8.19. Solve the following: MAX y = 25 + 3x + 10x2 s.t.: 5x = 10.

8.20. An investor intends to create a portfolio of two assets with the following
expected return and standard deviation levels:

Asset E[R] σ

A 0.10 0.20
B 0.20 0.40

σAB = 0.04

Determine the following:

(a) Optimal portfolio weights given each of the following expected return
constraints:

(i) E(Rp) = 0.15;
(ii) E(Rp) = 0.12;
(iii) E(Rp) = 0.18.

(b) Optimal portfolio weights given each of the same expected return
constraints in part (a) above, securities A and B from above and
assuming the existence of a riskless asset with a 9% expected return.
Use the Lagrange optimization procedure.

8.21. Securities A, B, and C have expected standard deviations of returns equal
to 0, 0.50, and 0.90, respectively. Securities A, B, and C have expected returns
equal to 0.05, 0.07, and 0.11, respectively. The covariance between
returns on B and C is zero. What are the security weights of the optimal
portfolio with an expected return of 0.10?
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APPENDIX 8.A DERIVATIVES OF POLYNOMIALS
(Background reading: sections 2.12 and 8.3)

The derivative of the polynomial y = cxn with respect to x is determined by

(8.A.1)

The binomial theorem enables us to obtain the second part of equation (8.A.1) from
the first. Recall from section 2.3 that the term (n

1) reads “n choose one”. Generally, the
function (n

j ) can be used to determine the number of ways in which a subset of size j
can be taken from a set of size n. Its value is determined as follows:

(8.A.2)

For example, (5
2 ) reads “5 choose 2” and has a value equal to 5! ÷ [2!(5 − 2)!] = 120 ÷

[2(3 · 2)] = 10. Thus, there are 10 subsets of 2 outcomes from a set of 5.
To simplify the right-hand side of equation (8.A.1), we first note that the cxn terms

cancel out. Next, we note that h is divided into each of the remaining terms, leaving
us with

(8.A.3)

As h approaches zero, all terms multiplied by h, or by h raised to any positive integer
power, will approach zero. This leaves us with

(8.A.4)

Thus, the derivative of cxn with respect to x is cnxn−1. If we were to have a polynomial
of the form

(8.A.5)

the derivative of such a function y with respect to x would be given by

(8.A.6)
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APPENDIX 8.C PORTFOLIO RISK MINIMIZATION 
ON A SPREADSHEET

(Background reading: section 8.8, application 8.8, 
and appendix 7.C)

This appendix employs the Lagrange optimization routine (application 8.8) on an
ExcelTM spreadsheet to determine optimal portfolio weights. The routine minimizes port-
folio standard deviation subject to an expected portfolio return. Consider an investor
who intends to select weights for an n-security portfolio whose characteristics may be
inferred from the following system:

This system may be applied regardless of the size of the portfolio. Where the number
of securities under consideration for the portfolio equals n, the square coefficients
matrix will have n + 2 rows and n + 2 columns.

This system may be input to a spreadsheet to solve for the system of n weights and
two Lagrange multipliers. Table 8.C.1 represents an ExcelTM spreadsheet printout of a
system used to solve for optimal weights in a two-security portfolio. The target return
for this portfolio is 0.07 and the expected security returns are 0.05 for security A 
and 0.15 for security B. Security standard deviations are expected to be 0.1 for A and 
0.5 for B. The covariance between returns on A and B is expected to be −0.025. These
optimization inputs are represented in the first two rows of the spreadsheet.

The left part of the table represents numerical values displayed by the spreadsheet;
the right part represents actual cell entries. Rows 1 and 2 are numerical inputs for the
file from the problem to be solved; Rows 4–7 are the rows of the coefficients matrix to be
inverted. See appendix 7.A for details on how to invert this matrix. We then multiply
the solutions vector in range E9:E12 by the inverse of the coefficients matrix in range
A9:D12, using the procedure discussed in appendix 7.A. The solutions to the problem
are given in range A14:A17. This procedure is easily extended to accommodate as many
securities as is necessary.
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